• 제목/요약/키워드: Nonlinear Optimization Model

검색결과 461건 처리시간 0.025초

High Voltage MOSFET의 DC 해석 용 SPICE 모델 파라미터 추출 방법에 관한 연구 (A Study on the SPICE Model Parameter Extraction Method for the DC Model of the High Voltage MOSFET)

  • 이은구
    • 전기학회논문지
    • /
    • 제60권12호
    • /
    • pp.2281-2285
    • /
    • 2011
  • An algorithm for extracting SPICE MOS level 2 model parameters for the high voltage MOSFET DC model is proposed. The optimization method for analyzing the nonlinear data of the current-voltage curve using the Gauss-Newton algorithm is proposed and the pre-process step for calculating the threshold voltage and the mobility is proposed. The drain current obtained from the proposed method shows the maximum relative error of 5.6% compared with the drain current of 2-dimensional device simulation for the high voltage MOSFET.

퍼지 추론 방법을 이용한 퍼지 동정과 유전자 알고리즘에 의한 이의 최적화 (Fuzzy Identification by means of Fuzzy Inference Method and its Optimization by GA)

  • 박병준;박춘성;안태천;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.563-565
    • /
    • 1998
  • In this paper, we are proposed optimization method of fuzzy model in order to complex and nonlinear system. In the fuzzy modeling, a premise identification is very important to describe the charateristics of a given unknown system. Then, the proposed fuzzy model implements system structure and parameter identification, using the fuzzy inference method and genetic algorithms. Inference method for fuzzy model presented in our paper include the simplified inference and linear inference. Time series data for gas furance and sewage treatment process are used to evaluate the performance of the proposed model. Also, the performance index with weighted value is proposed to achieve a balance between the results of performance for the training and testing data.

  • PDF

Time-Delay Control for the Implementation of the Optimal Walking Trajectory of Humanoid Robot

  • Ahn, Doo Sung
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권3호
    • /
    • pp.1-7
    • /
    • 2018
  • Humanoid robots have fascinated many researchers since they appeared decades ago. For the requirement of both accurate tracking control and the safety of physical human-robot interaction, torque control is basically desirable for humanoid robots. Humanoid robots are highly nonlinear, coupled, complex systems, accordingly the calculation of robot model is difficult and even impossible if precise model of the humanoid robots are unknown. Therefore, it is difficult to control using traditional model-based techniques. To realize model-free torque control, time-delay control (TDC) for humanoid robot was proposed with time-delay estimation technique. Using optimal walking trajectory obtained by particle swarm optimization, TDC with proposed scheme is implemented on whole body of a humanoid, not on biped legs even though it is performed by a virtual humanoid robot. The simulation results show the validity of the proposed TDC for humanoid robots.

An inverse determination method for strain rate and temperature dependent constitutive model of elastoplastic materials

  • Li, Xin;Zhang, Chao;Wu, Zhangming
    • Structural Engineering and Mechanics
    • /
    • 제80권5호
    • /
    • pp.539-551
    • /
    • 2021
  • With the continuous increase of computational capacity, more and more complex nonlinear elastoplastic constitutive models were developed to study the mechanical behavior of elastoplastic materials. These constitutive models generally contain a large amount of physical and phenomenological parameters, which often require a large amount of computational costs to determine. In this paper, an inverse parameter determination method is proposed to identify the constitutive parameters of elastoplastic materials, with the consideration of both strain rate effect and temperature effect. To carry out an efficient design, a hybrid optimization algorithm that combines the genetic algorithm and the Nelder-Mead simplex algorithm is proposed and developed. The proposed inverse method was employed to determine the parameters for an elasto-viscoplastic constitutive model and Johnson-cook model, which demonstrates the capability of this method in considering strain rate and temperature effect, simultaneously. This hybrid optimization algorithm shows a better accuracy and efficiency than using a single algorithm. Finally, the predictability analysis using partial experimental data is completed to further demonstrate the feasibility of the proposed method.

Advanced nonlinear Muskingum model incorporating lateral flow를 위한 exponential bandwidth harmony search with centralized global search의 적용 (Application of exponential bandwidth harmony search with centralized global search for advanced nonlinear Muskingum model incorporating lateral flow)

  • 김영남;이의훈
    • 한국수자원학회논문집
    • /
    • 제53권8호
    • /
    • pp.597-604
    • /
    • 2020
  • 하도홍수추적을 위한 수문학적 방법인 머스킹검 방법은 유입량, 유출량 그리고 저류량의 관계를 활용하여 유출량을 예측하는 방법이다. 머스킹검 방법에 관한 많은 연구가 진행되면서 필요한 매개변수들은 점점 늘어나게 되었고, 많은 매개변수로 인해 계산과정이 복잡해졌다. 이러한 문제를 해결하기 위해 최적화 알고리즘을 머스킹검 방법의 매개변수 산정에 적용하였다. 본 연구는 Advanced Nonlinear Muskingum Model considering continuous flow (ANLMM-L)를 Wilson 홍수자료와 Sutculer 홍수자료에 적용하여 Linear Munsingum Model incorporating Lateral flow (LMM-L)과 Kinematic Wave Model (KWM)의 결과와 비교하였다. 관측 유출량과 모의 유출량과의 비교를 위한 지표로 Sum of Squares (SSQ)를 사용하였다. Exponential Bandwidth Harmony Search with Centralized Global Search (EBHS-CGS)가 ANLMM-L의 매개변수 산정에 적용되었다. Wilson 홍수자료에 적용한 결과 LMM-L보다 ANLMM-L이 정확한 결과를 나타냈다. Sutculer 홍수자료에서는 ANLMM-L이 KWM보다 좋은 결과를 보이긴 했으나, Sutculer 홍수자료의 유량이 크기 때문에 Wilson 홍수자료의 경우에 비해 SSQ가 크게 나타났다. EBHS-CGS는 본 연구에서 적용한 머스킹검 홍수추적뿐만 아니라 다양한 수자원 공학 문제에 적용할 수 있을 것이다.

신재생에너지 단독주택 모델 냉방운전의 선형계획법 기반 운전 최적화 연구 (Optimal Cooling Operation of a Single Family House Model Equipped with Renewable Energy Facility by Linear Programming)

  • 신영기;김의종;이경호
    • 설비공학논문집
    • /
    • 제29권12호
    • /
    • pp.638-644
    • /
    • 2017
  • Optimal cooling operation algorithm was developed based on a simulation case of a single family house model equipped with renewable energy facility. EnergyPlus simulation results were used as virtual test data. The model contained three energy storage elements: thermal heat capacity of the living room, chilled water storage tank, and battery. Their charging and discharging schedules were optimized so that daily electricity bill became minimal. As an optimization tool, linear programming was considered because it was possible to obtain results in real time. For its adoption, EnergyPlus-based house model had to be linearly approximated. Results of this study revealed that dynamic cooling load of the living room could be approximated by a linear RC model. Scheduling based on the linear programming was then compared to that by a nonlinear optimization algorithm which was made using GenOpt developed by a national lab in USA. They showed quite similar performances. Therefore, linear programming can be a practical solution to optimal operation scheduling if linear dynamic models are tuned to simulate their real equivalents with reasonable accuracy.

유한요소모델개선을 위한 하이브리드 최적화기법의 수치해석 검증 (Numerical Verification of Hybrid Optimization Technique for Finite Element Model Updating)

  • 정대성;김철영
    • 한국지진공학회논문집
    • /
    • 제10권6호
    • /
    • pp.19-28
    • /
    • 2006
  • 기존의 유한요소모델개선기법들은 측정에 의한 모달 데이터와 해석적으로 계산된 시스템 행렬로 구성된 수학적인 목적함수를 사용하거나 업데이팅 변수에 관한 모달 특성의 미분함수를 사용하여야만 한다. 따라서 교량구조물과 같은 복잡한 구조물에의 적용이 어렵고 역해석에 있어 해의 안정성 문제가 발생할 수 있다. 또한 개선된 모델이 물리적인 의미를 지니지 못할 수도 있다. 본 논문에서는 유전자알고리즘과 Welder-Mead의 심플렉스기법을 사용한 하이브리드 최적화 유한요소모델개선기법을 제안하였다. 하이브리드 최적화 기법의 성능을 검증하기 위해 3개의 국부최소값과 1개의 전체최소값을 갖는 Goldstein-Price 함수를 사용하여 비선형문제에 대한 적용성을 검토하였다. 또한 최적화목적함수의 영향을 검토하기 위해 10개의 자유도를 갖는 스프링-질량 모델을 사용하여 변수연구를 수행하였다. 최종적으로 수치해석을 통해서 질량과 강성을 동시에 개선하기 위한 최적화 목적함수를 제시하고, 제안된 하이브리드 최적화 기법이 유한요소모델개선을 위해 매우 효과적인 방법임을 입증하였다.

요소 연결 매개법을 이용한 선형 구조물의 동적 컴플라이언스 최적화 (Element Connectivity Based Topology Optimization for Linear Dynamic Compliance)

  • 윤길호
    • 한국전산구조공학회논문집
    • /
    • 제22권3호
    • /
    • pp.259-265
    • /
    • 2009
  • 본 연구 논문에서는 요소 연결 매개법(Element Connectivity Parameterization Method)을 이용하여 선형 구조물의 동적 컴플라이언스(Dynamic compliance)를 최소화하는 위상을 설계하는 기법을 연구한다. 기존의 밀도를 기반으로 한 위상최적화기법은 각 유한 요소의 탄성계수를 각 요소에 정의되어 있는 설계변수(Design Variable)를 이용하여 위상최적화를 수행한다. 이 방법은 현재까지 많은 선형구조문제에 적용되었지만 비선형 문제와 멀티피직스 시스템에서 수치적인 문제점이 보고되었다. 이런 문제점을 근본적으로 해결하기 위하여 최근에 요소 연결 매개법(Element Connectivity Parameterization Method)이란 새로운 최적화 기법이 개발되었다. 이 새로운 설계 방법은 요소의 강성을 설계하는 것이 아니라 요소의 연결성을 설계하는 기법으로 이를 이용하여 비선형 구조물이나 멀티피직스 시스템의 위상최적화를 효과적으로 수행할 수 있다. 하지만, 아직까지 질량 행렬의 정의에 대한 모호함으로 인하여 동적인 구조물의 최적화에 대한 연구가 많이 이루어지지 않았다. 이런 문제점을 해결하기 위하여 요소 연결 매개법에서 질량행렬을 정의하는 방법을 연구하며, 이를 이용하여 선형 구조물의 동적 컴플라이언스(Dynamic Compliance)를 고려한 위상최적화 문제에 적용하여 제안된 방법을 검증하였다.

Hierarchical Optimal Control of Urban Traffic Networks

  • 박은세
    • ETRI Journal
    • /
    • 제5권2호
    • /
    • pp.17-28
    • /
    • 1983
  • This paper deals with the problem of optimally controlling traffic flows in urban transportation traffic networks. For this, a nonlinear discrete-time model of urban traffic network is first suggested in order to handle the phenomenon of traffic flows such as oversaturatedness and/or undersaturatedness. Then an optimal control problem is formulated and a hierarchical optimization technique is applied, which is based upon a prediction-type two-level method of Hirvonen and Hakkala.

  • PDF

Fuzzy Model Identification Using VmGA

  • Park, Jong-Il;Oh, Jae-Heung;Joo, Young-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권1호
    • /
    • pp.53-58
    • /
    • 2002
  • In the construction of successful fuzzy models for nonlinear systems, the identification of an optimal fuzzy model system is an important and difficult problem. Traditionally, sGA(simple genetic algorithm) has been used to identify structures and parameters of fuzzy model because it has the ability to search the optimal solution somewhat globally. But SGA optimization process may be the reason of the premature local convergence when the appearance of the superior individual at the population evolution. Therefore, in this paper we propose a new method that can yield a successful fuzzy model using VmGA(virus messy genetic algorithms). The proposed method not only can be the countermeasure of premature convergence through the local information changed in population, but also has more effective and adaptive structure with respect to using changeable length string. In order to demonstrate the superiority and generality of the fuzzy modeling using VmGA, we finally applied the proposed fuzzy modeling methodof a complex nonlinear system.