DOI QR코드

DOI QR Code

Application of exponential bandwidth harmony search with centralized global search for advanced nonlinear Muskingum model incorporating lateral flow

Advanced nonlinear Muskingum model incorporating lateral flow를 위한 exponential bandwidth harmony search with centralized global search의 적용

  • Kim, Young Nam (Department of Civil Engineering, Chungbuk national University) ;
  • Lee, Eui Hoon (Department of Civil Engineering, Chungbuk national University)
  • 김영남 (충북대학교 토목공학과) ;
  • 이의훈 (충북대학교 토목공학부)
  • Received : 2020.06.03
  • Accepted : 2020.07.08
  • Published : 2020.08.31

Abstract

Muskingum, a hydrologic channel flood routing, is a method of predicting outflow by using the relationship between inflow, outflow, and storage. As many studies for Muskingum model were suggested, parameters were gradually increased and the calculation process was complicated by many parameters. To solve this problem, an optimization algorithm was applied to the parameter estimation of Muskingum model. This study applied the Advanced Nonlinear Muskingum Model considering continuous flow (ANLMM-L) to Wilson flood data and Sutculer flood data and compared results of the Linear Nonsingum Model incorporating Lateral flow (LMM-L), and Kinematic Wave Model (KWM). The Sum of Squares (SSQ) was used as an index for comparing simulated and observed results. Exponential Bandwidth Harmony Search with Centralized Global Search (EBHS-CGS) was applied to the parameter estimation of ANLMM-L. In Wilson flood data, ANLMM-L showed more accurate results than LMM-L. In the Sutculer flood data, ANLMM-L showed better results than KWM, but SSQ was larger than in the case of Wilson flood data because the flow rate of Sutculer flood data is large. EBHS-CGS could be appplied to be appplicable to various water resources engineering problems as well as Muskingum flood routing in this study.

하도홍수추적을 위한 수문학적 방법인 머스킹검 방법은 유입량, 유출량 그리고 저류량의 관계를 활용하여 유출량을 예측하는 방법이다. 머스킹검 방법에 관한 많은 연구가 진행되면서 필요한 매개변수들은 점점 늘어나게 되었고, 많은 매개변수로 인해 계산과정이 복잡해졌다. 이러한 문제를 해결하기 위해 최적화 알고리즘을 머스킹검 방법의 매개변수 산정에 적용하였다. 본 연구는 Advanced Nonlinear Muskingum Model considering continuous flow (ANLMM-L)를 Wilson 홍수자료와 Sutculer 홍수자료에 적용하여 Linear Munsingum Model incorporating Lateral flow (LMM-L)과 Kinematic Wave Model (KWM)의 결과와 비교하였다. 관측 유출량과 모의 유출량과의 비교를 위한 지표로 Sum of Squares (SSQ)를 사용하였다. Exponential Bandwidth Harmony Search with Centralized Global Search (EBHS-CGS)가 ANLMM-L의 매개변수 산정에 적용되었다. Wilson 홍수자료에 적용한 결과 LMM-L보다 ANLMM-L이 정확한 결과를 나타냈다. Sutculer 홍수자료에서는 ANLMM-L이 KWM보다 좋은 결과를 보이긴 했으나, Sutculer 홍수자료의 유량이 크기 때문에 Wilson 홍수자료의 경우에 비해 SSQ가 크게 나타났다. EBHS-CGS는 본 연구에서 적용한 머스킹검 홍수추적뿐만 아니라 다양한 수자원 공학 문제에 적용할 수 있을 것이다.

Keywords

References

  1. Geem, Z.W., Kim, J.H., and Loganathan, G.V. (2001). "A new heuristic optimization algorithm: harmony search." Simulation, Simulation Councils INC, Vol. 76, No. 2, pp. 60-68. https://doi.org/10.1177/003754970107600201
  2. Gill, M.A. (1978). "Flood routing by the Muskingum model." Journal of Hydrology, Elsevier, Vol. 36, No. 3-4, pp. 353-363. https://doi.org/10.1016/0022-1694(78)90153-1
  3. Karahan, H., and Gurarslan, G. (2013). "Modelling flood routing problems using kinematic wave approach: Sutculer example." Proceedings of the 7th National Hydrology Congress, Isparta, Turkey, pp. 26-27.
  4. Karahan, H., Gurarslan, G., and Geem, Z.W. (2015). "A new nonlinear Muskingum flood routing model incorporating lateral flow." Engineering Optimization, Taylor and Francis, Vol. 47, No. 6, pp. 737-749. https://doi.org/10.1080/0305215X.2014.918115
  5. Kim, Y.N., and Lee, E.H. (2020). "Development of the meta-heuristic optimization algorithm: Exponential bandwidth harmony search with centralized global search." Journal of the Korea Academia-Industrial cooperation Society, JKAIS, Vol. 21, No. 2, pp. 8-18. https://doi.org/10.5762/KAIS.2020.21.2.8
  6. Lee, E.H., Lee, H.M., and Kim, J.H. (2018). "Development and application of advanced Muskingum flood routing model considering continuous flow." Water, MDPI, Vol. 10, No. 6, p. 760. https://doi.org/10.3390/w10060760
  7. Mahdavi, M., Fesanghart, M., and Damangir, E. (2007). "An improved harmony search algorithm for solving optimization problems." Applied mathematics and computation, Elsevier Sicence INC, Vol. 188, No. 2, pp. 1567-1579. https://doi.org/10.1016/j.amc.2006.11.033
  8. McCarthy, G.T. (1938). "The unit hydrograph and flood routing." Proceedings Conference of North Atlantic Division, U.S. Army Corps of Engineers, New London, CT.
  9. O'Donnell, T. (1985). "A direct three-parameter Muskingum procedure incorporating lateral inflow." Hydrological Sciences Journal, Taylor and Francis, Vol. 30, No. 3, pp. 479-496. https://doi.org/10.1080/02626668509491013
  10. Omran, M.G., and Mahdavi, M. (2008). "Global-best harmony search." Applied mathematics and computation, Elsevier Sicence INC, Vol. 198, No. 2, pp. 643-656. https://doi.org/10.1016/j.amc.2007.09.004
  11. Wang, C.M., and Huang, Y.F. (2010). "Self-adaptive harmony search algorithm for optimization." Expert Systems with Applications, Pergamon-Elsevier Science LTD, Vol. 37, No. 4, pp. 2826-2837. https://doi.org/10.1016/j.eswa.2009.09.008
  12. Wilson, E.M. (1974). Engineering Hydrology. Macmillan, London.