• Title/Summary/Keyword: Nonlinear Damper

Search Result 308, Processing Time 0.033 seconds

Performance Test and Numerical Model Development of Restoring Viscous Damper for X-type Damper System (X형 감쇠시스템을 위한 복원성 점성 감쇠기 성능 실험 및 수치모형 개발)

  • Kim, David;Park, Jangho;Ok, Seung-Yong;Park, Wonsuk
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.52-57
    • /
    • 2016
  • In this study, a restoring viscous damper is introduced for X-type damper system which is designed for the seismic response control of large spatial structures. A nonlinear numerical model for its behavior is developed using the result of dynamic loading tests. The X-type damper system is composed of restoring viscous dampers and connecting devices such as adjustable wire bracing, where the damping capacity of the system is controllable by changing the number of the dampers. The restoring viscous damper is devised to exert main damping force in tension direction, which is effective to prevent the buckling of bracing subjected to compressive axial force. To evaluate the performance of the proposed damper, dynamic cyclic loading tests are performed by using manufactured dampers at full scale. In order to construct the numerical model of the damper system, its model parameters are first identified using a nonlinear curve fitting method with the test data. The numerical simulations are then performed to validate the accuracy of the numerical model in comparison with the experimental test results. It is expected that the proposed system is effectively applicable to various building structures for seismic performance enhancement.

Optimal placement and design of nonlinear dampers for building structures in the frequency domain

  • Fujita, Kohei;Kasagi, Masatoshi;Lang, Zi-Qiang;Penfei, Guo;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1025-1044
    • /
    • 2014
  • In this paper, a systematic technique is proposed for the optimal placement and design of nonlinear dampers for building structures. The concept of Output Frequency Response Function (OFRF) is applied to analytically represent the output frequency response of a building frame where nonlinear viscous dampers are fitted for suppression of vibration during earthquakes. An effective algorithm is derived using the analytical representation to optimally determine the locations and parameters of the nonlinear dampers. Various numerical examples are provided to verify the effectiveness of the optimal designs. A comparison of the vibration suppression performance with that of the frame structure under a random or uniform damping allocation is also made to demonstrate the advantages of the new designs over traditional solutions.

Simulation of Vehicle-Track-Bridge Dynamic Interaction by Nonlinear Hertzian Contact Spring and Displacement Constraint Equations (비선형 헤르쯔 접촉스프링과 변위제한조건식의 적용에 의한 차량-궤도-교량 동적상호작용 수치해석기법)

  • Chung Keun-Young;Lee Sung-Uk;Min Kyung-Ju
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.191-196
    • /
    • 2005
  • In this study, to describe vehicle-track-bridge dynamic interaction phenomena with 1/4 vehicle model, nonlinear Hertzian contact spring and nonlinear contact damper are introduced. In this approach external loads acting on 1/4 vehicle model are self weight of vehicle and geometry information of running surface. The constraint equation on contact surface is implemented by Penalty method. Also, to improve the numerical stability and to maintain accuracy of solution, the artificial damper and the reaction from constraint violation are introduced. A nonlinear time integration method, in this study, Newmark method is adopted for both equations of vehicles and structure. And to reduce the error caused by inadequate time step size, adaptive time-stepping technique is partially introduced. As the nonlinear Hertzian contact spring has no resistance to tensile force, the bouncing phenomena of wheelset can be described. Thus, it is expected that more versatile dynamic interaction phenomena can be described by this approach and it can be applied to various railway dynamic problems.

  • PDF

Mechanical Characteristics Analysis of Coil Spring & Viscous Damper System (Coil Spring & Viscose Damper System의 동적거동특성분석)

  • Kim, Min-Kyu;Choun, Young-Sun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.471-478
    • /
    • 2006
  • This paper presents the results of experimental studies of the mechanical characteristics of the Coil Spring and Viscous Damper system. The Coil Spring and Viscous Damper systems were selected for the isolation of Emergency Diesel Generator (EDG) which is located in Nuclear Power Plant (NPP). The Coil Spring and Viscous Damper systems were developed for, the operating vibration isolation and seismic isolation for scaled Model EDG System. The damping properties of the viscous damper changes as the variation of velocity. As a results, nonlinear damping characteristics of viscous damper system were evaluated.

  • PDF

Seismic control of concrete buildings with nonlinear behavior, considering soil structure interaction using AMD and TMD

  • Mortezaie, Hamid;Zamanian, Reza
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.721-734
    • /
    • 2021
  • The seismic analysis of structures without applying the effects of soil can undermine functional objectives of structure so that it can affect all the desired purposes at the design and control stages of the structure. In this research, employing OpenSees and MATLAB software simultaneously and developing a definite three-dimensional finite element model of a high-rise concrete structure, designed using performance-based plastic design approach, the performance of Tuned Mass Damper (TMD) and Active Mass Damper (AMD) is both examined and compared. Moreover some less noted aspects such as nonlinear interaction of soil and structure, uplift, nonlinear behavior of structure and structural torsion have received more attention. For this purpose, the analysis of time history on the structural model has been performed under 22 far-field accelerogram records. Examining a full range of all structural seismic responses, including lateral displacement, acceleration, inter-story drift, lost plastic energy, number of plastic hinges, story shear force and uplift. The results indicate that TMD performs better than AMD except for lateral displacement and inter-story drift to control other structural responses. Because on the one hand, nonlinear structural parameters and soil-structure interaction have been added and on the other hand, the restriction on the control force applied that leads up to saturation phenomenon in the active control system affect the performance of AMD. Moreover, the control force applied by structural control system has created undesirable acceleration and shear force in the structure.

Numerical Evaluation of Control Force in Rectangular Tuned Liquid Damper (사각형 동조 액체 감쇄장치(TLD)에서 조절하중의 수치적 산정)

  • 정일영;황종국
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.250-257
    • /
    • 1995
  • The properties of Tuned Liquid Damper are investigated theoretically. In this study, numerical model is a nonlinear model for a rectangular TLD under horizontal motion on the basis of the shallow water wave theory, where the damping of the liquid motion is included semianalytically. For TLD subjected to harmonic external force, the liquid motion of TLD is simulated. Analysis result is showed that liquid motion in TLD is strongli nonlinear even under small excitation.

  • PDF

Testing of tuned liquid damper with screens and development of equivalent TMD model

  • Tait, M.J.;El Damatty, A.A.;Isyumov, N.
    • Wind and Structures
    • /
    • v.7 no.4
    • /
    • pp.215-234
    • /
    • 2004
  • The tuned liquid damper (TLD) is increasingly being used as an economical and effective vibration absorber. It consists of a water tank having the fundamental sloshing fluid frequency tuned to the natural frequency of the structure. In order to perform efficiently, the TLD must possess a certain amount of inherent damping. This can be achieved by placing screens inside the tank. The current study experimentally investigates the behaviour of a TLD equipped with damping screens. A series of shake table tests are conducted in order to assess the effect of the screens on the free surface motion, the base shear forces and the amount of energy dissipated. The variation of these parameters with the level of excitation is also studied. Finally, an amplitude dependent equivalent tuned mass damper (TMD), representing the TLD, is determined based on the experimental results. The dynamic characteristics of this equivalent TMD, in terms of mass, stiffness and damping parameters are determined by energy equivalence. The above parameters are expressed in terms of the base excitation amplitude. The parameters are compared to those obtained using linear small amplitude wave theory. The validity of this nonlinear model is examined in the companion paper.

A Fuzzy Skyhook Algorithm Using Piecewise Linear Inverse Model

  • Cho Jeong-Mok;Yoo Bong-Soo;Joh Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.190-196
    • /
    • 2006
  • In this paper, the nonlinear damping force model is made to identify the properties of the ER damper using higher order spectrum. The higher order spectral analysis is used to investigate the nonlinear frequency coupling phenomena with the damping force signal according to the sinusoidal excitation of the damper. Also, this paper presents an inverse model of the ER damper, i.e., the model can predict the required voltage so that the ER damper can produce the desired force for the requirement of vibration control of vehicle suspension systems. The inverse model has been constructed by using piecewise linear damping force model. In this paper, the fuzzy logic control based on heuristic knowledge is combined with the skyhook control. And it is simulated for a quarter car model. The acceleration of the sprung mass is included in the premise part of the fuzzy rules to reduce the vertical acceleration RMS value of the sprung mass. Then scaling factors and membership functions are tuned using genetic algorithm to obtain optimal performance.

Shaking Table Test for Analysis of Effect on Vibration Control of the Piping System by Steel Coil Damper (강재 코일 댐퍼의 배관시스템 진동제어 효과 분석을 위한 진동대시험)

  • Choi, Song Yi;So, Gi Hwan;Cho, Sung Gook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.39-48
    • /
    • 2022
  • Many piping systems installed in the power plant are directly related to the safety and operation of the plant. Various dampers have been applied to the piping system to reduce the damage caused by earthquakes. In order to reduce the vibration of the piping system, this study developed a steel coil damper (SCD) with a straightforward structure but excellent damping performance. SCD reduces the vibration of the objective structure by hysteretic damping. The new SCD damper can be applied to high-temperature environments since it consists of steel members. The paper introduces a design method for the elastoplastic coil spring, which is the critical element of SCD. The practical applicability of the design procedure was validated by comparing the nonlinear force-displacement curves calculated by design equations with the results obtained from nonlinear finite element analysis and repeated loading test. It was found that the designed SCD's have a damping ratio higher than 25%. In addition, this study performed a set of seismic tests using a shaking table with an existing piping system to verify the vibration control capacity on the piping system by SCD. Test results prove that the SCD can effectively control the displacement vibration of the piping system up to 80%.

Mechanical Characteristic Analysis of Coil Spring & Viscous Damper (Coil Spring & Viscous Damper System의 동특성분석)

  • Kim, Min-Kyu;Choun, Young-Sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.19-26
    • /
    • 2007
  • This paper presents the results of experimental studies of the mechanical characteristics of the Coil Spring and Viscous Damper system. The Coil Spring and Viscous Damper systems were selected for the isolation of Emergency Diesel Generator (EDG) which is located in Nuclear Power Plant (NPP). The Coil Spring and Viscous Damper systems were developed for the operating vibration isolation and seismic isolation for scaled Model EDG System. The damping properties of the viscous damper changes as the variation of velocity. Through this research nonlinear damping characteristics and the effective stiffness of coil spring and viscous damper system were evaluated.