• 제목/요약/키워드: Nonlinear Approximation

검색결과 557건 처리시간 0.03초

GENERAL NONLINEAR VARIATIONAL INCLUSIONS WITH H-MONOTONE OPERATOR IN HILBERT SPACES

  • Liu, Zeqing;Zheng, Pingping;Cai, Tao;Kang, Shin-Min
    • 대한수학회보
    • /
    • 제47권2호
    • /
    • pp.263-274
    • /
    • 2010
  • In this paper, a new class of general nonlinear variational inclusions involving H-monotone is introduced and studied in Hilbert spaces. By applying the resolvent operator associated with H-monotone, we prove the existence and uniqueness theorems of solution for the general nonlinear variational inclusion, construct an iterative algorithm for computing approximation solution of the general nonlinear variational inclusion and discuss the convergence of the iterative sequence generated by the algorithm. The results presented in this paper improve and extend many known results in recent literatures.

월쉬함수에 의한 비선형계의 해석 및 최적제어에 관한 연구 (A Study on the Analysis and Optimal Control of Nonlinear Systems via Walsh Function)

  • 김진태;김태훈;이명규;안두수
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권7호
    • /
    • pp.354-362
    • /
    • 2000
  • This paper presents the new adaptive optimal scheme for the nonlinear systems, which is based on the Picard's iterative approximation and fast Walsh transform. It is well known that the Walsh function approach method is very difficult to apply for the analysis and optimal control of nonlinear systems. However, these problems can be easily solved by the improvement of the previous adaptive optimal scheme. The proposed method is easily applicable to the analysis and optimal control of nonlinear systems.

  • PDF

ADAPTIVEK FUZZY CONTROL BASED ON SPEED GRADIENT ALGORITHM

  • Jeoung, Sacheul;Yoo, Byungkook;Ham, Woonchul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.178-182
    • /
    • 1995
  • In this paper, the fuzzy approximator and nonlinear inversion control scheme are considered. An adaptive nonlinear control is proposed based on the speed gradient algorithms proposed by Fradkov. This proposed control scheme is that three types of adaptive law is utilized to approximate the unknown function f by fuzzy logic system in designing the nonlinear inversion controller for the nonlinear system. In order to reduce the approximation errors, the differences of nonlinear function and fuzzy approximator, another three types of adaptive law is also introduced and the stability of proposed control scheme are proven with SG algorithm.

  • PDF

FUZZY GENERAL NONLINEAR ORDERED RANDOM VARIATIONAL INEQUALITIES IN ORDERED BANACH SPACES

  • Salahuddin, Salahuddin;Lee, Byung-Soo
    • East Asian mathematical journal
    • /
    • 제32권5호
    • /
    • pp.685-700
    • /
    • 2016
  • The main object of this work to introduced and studied a new class of fuzzy general nonlinear ordered random variational inequalities in ordered Banach spaces. By using the random B-restricted accretive mapping with measurable mappings ${\alpha},{\alpha}^{\prime}:{\Omega}{\rightarrow}(0,1)$, an existence of random solutions for this class of fuzzy general nonlinear ordered random variational inequality (equation) with fuzzy mappings is established, a random approximation algorithm is suggested for fuzzy mappings, and the relation between the first value $x_0(t)$ and the random solutions of fuzzy general nonlinear ordered random variational inequality is discussed.

Hermite전개법에 의한 비선형계의 상태추정 및 동정에 관한 연구 (State Estimation and Identification of Nonlinear Systems by Hermitian Expansion of Probability Distributions)

  • 김경기
    • 전기의세계
    • /
    • 제22권3호
    • /
    • pp.49-62
    • /
    • 1973
  • An algorithm for the state estimation and identification of multivariable nonlinear systems with noisy nonlinear observation has been investigated on the basis of the multidimensional Hermitian expansion for the a posteriori probability densities of the predicted observation, the predicted state and the observation conditioned by the state. A new approach for construction of this sequential nonlinear estimator, retaining up to the second order term of the observation error, has been developed, along with the approximation of nonlinear system functions, truncating at the second term. The estimation of the unknown parameters has been established by extending the state estimation technique, regarding the parameters as another state variables. The results of investigation indicate the feasibility of the schemes presented in this paper.

  • PDF

Identification of nonlinear elastic structures using empirical mode decomposition and nonlinear normal modes

  • Poon, C.W.;Chang, C.C.
    • Smart Structures and Systems
    • /
    • 제3권4호
    • /
    • pp.423-437
    • /
    • 2007
  • The empirical mode decomposition (EMD) method is well-known for its ability to decompose a multi-component signal into a set of intrinsic mode functions (IMFs). The method uses a sifting process in which local extrema of a signal are identified and followed by a spline fitting approximation for decomposition. This method provides an effective and robust approach for decomposing nonlinear and non-stationary signals. On the other hand, the IMF components do not automatically guarantee a well-defined physical meaning hence it is necessary to validate the IMF components carefully prior to any further processing and interpretation. In this paper, an attempt to use the EMD method to identify properties of nonlinear elastic multi-degree-of-freedom structures is explored. It is first shown that the IMF components of the displacement and velocity responses of a nonlinear elastic structure are numerically close to the nonlinear normal mode (NNM) responses obtained from two-dimensional invariant manifolds. The IMF components can then be used in the context of the NNM method to estimate the properties of the nonlinear elastic structure. A two-degree-of-freedom shear-beam building model is used as an example to illustrate the proposed technique. Numerical results show that combining the EMD and the NNM method provides a possible means for obtaining nonlinear properties in a structure.

파라메트릭 활성함수를 이용한 심층신경망의 성능향상 방법 (Performance Improvement Method of Deep Neural Network Using Parametric Activation Functions)

  • 공나영;고선우
    • 한국콘텐츠학회논문지
    • /
    • 제21권3호
    • /
    • pp.616-625
    • /
    • 2021
  • 심층신경망은 임의의 함수를 근사화하는 방법으로 선형모델로 근사화한 후에 비선형 활성함수를 이용하여 추가적 근사화를 반복하는 근사화 방법이다. 이 과정에서 근사화의 성능 평가 방법은 손실함수를 이용한다. 기존 심층학습방법에서는 선형근사화 과정에서 손실함수를 고려한 근사화를 실행하고 있지만 활성함수를 사용하는 비선형 근사화 단계에서는 손실함수의 감소와 관계가 없는 비선형변환을 사용하고 있다. 본 연구에서는 기존의 활성함수에 활성함수의 크기를 변화시킬 수 있는 크기 파라메터와 활성함수의 위치를 변화시킬 수 있는 위치 파라미터를 도입한 파라메트릭 활성함수를 제안한다. 파라메트릭 활성함수를 도입함으로써 활성함수를 이용한 비선형 근사화의 성능을 개선시킬 수 있다. 각 은닉층에서 크기와 위치 파라미터들은 역전파 과정에서 파라미터들에 대한 손실함수의 1차 미분계수를 이용한 학습과정을 통해 손실함수 값을 최소화시키는 파라미터를 결정함으로써 심층신경망의 성능을 향상시킬 수 있다. MNIST 분류 문제와 XOR 문제를 통하여 파라메트릭 활성함수가 기존의 활성함수에 비해 우월한 성능을 가짐을 확인하였다.

A NEW METHOD FOR SOLVING NONLINEAR SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS

  • Gachpazan. M.;Kerayechian, A.;Kamyad, A.V.
    • Journal of applied mathematics & informatics
    • /
    • 제7권2호
    • /
    • pp.453-465
    • /
    • 2000
  • In this paper, a new method for finding the approximate solution of a second order nonlinear partial differential equation is introduced. In this method the problem is transformed to an equivalent optimization problem. them , by considering it as a distributed parameter control system the theory of measure is used for obtaining the approximate solution of the original problem.

An Exponentialization Procedure for General FMS Network of Queues with Limited Buffer

  • Lee, Ho-Chang
    • 한국경영과학회지
    • /
    • 제19권3호
    • /
    • pp.203-217
    • /
    • 1994
  • In this paper we develop an exponentialization procedure for the modelling of open FMS networks with general processing time at each station and limited buffer size. By imposing a reasonable assumption on the solution set, the nonlinear equation system for the exponentialization procedure is formulated as a variational inequality problem and the solution existence is examined. The efficient algorithm for the nonlinear equation system is developed using linearized Jacobi approximation method.

  • PDF