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Abstracts In this paper, the fuzzy approximator and nonlinear inversion control scheme are considered. An

adaptive nonlinear control is proposed based on the speed gradient algorithms proposed by Fradkov. This pro-

posed control scheme is that three types of adaptive law is utilized to approximate the unknown function f by

fuzzy logic system in designing the nonlinear inversion controller for the nonlinear system. In order to reduce

the approximation errors, the differences of nonlinear function and fuzzy approximator, another three types of

adaptive law is also introduced and the stability of proposed control scheme are proven with SG algorithm.
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1. INTRODUCTION

Since the original paper on fuzzy sets introduced by
L.A.Zadeh in 1965, and the first fuzzy logic controller re-
ported by Mamdani and his co-workers, several researches
have used the concept of the fuzzy sets theory successfully
applied to the area where the systems are complex and ill-
defined.

For those systems whose accurate mathematical models
are not avaiable or difficult to formulate, fuzzy control can
often provide a good solution by incorporating linguistic in-
formations from human experts. Despite its practical suc-
cesses in many areas, fuzzy control seems to be deficient
in formal analysis and robustness aspects. This is also a
great resource of criticism from some conventional control
researchers. To overcome this drawback, great efforts have
been done in the field of fuzzy control during the recent
years[3, 4, 5, 6, 7].

This paper is motivated by the researchers in Wang’
works that fuzzy logic systems (center average defuzzifier,
product-inference rule, singletone fuzzifier, and gaussian
membership function) are capable of uniformly approximat-
ing any nonlinear function over compact input space[3]. In
this paper, we introduce the speed gradient algorithm which
was suggested by Fradkov based on the convexity and at-
tainability. Three types of parameter update law are pro-
posed based on the adaptive control scheme and error dy-
namics derived by Wang[3). It is also demonstrated that the
proposed adaptive control algorithm have the global stabil-
ity. Especially, Wang utilized the general error dynamics
of adaptive control to design the adaptive fuzzy controller.
Many other researchers have attempted to apply the fuzzy
approximator or fuzzy logic concepts to the conventional
control technics. However, most of their works don’t have
formality. But in this work we use the SG algorithm which
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is formal to derive the update laws in the nonlinear fuzzy
control. Also we derive another update laws which can com-
pensate the approximate error based on SG algorithm.

This paper is organized as follows. Section 2 presents the
general fuzzy logic system and fuzzy approximator. In sec-
tion 3, the speed gradient algorithm which was suggestes
by Fradkov based on the convexity and attainability are
introduced{8]. In section 4, three types of parameter update
law are suggested using fuzzy approximator which approx-
imate the optimal nonlinear inversion control input based
on speed gradient algorithm. Conclusions are drawn in the
final section.

2. FUZZY LOGIC SYSTEM

2.1 Knowledge Base Constructed with Fuzzy Rules

The knowledge base for the fuzzy logic system comprises
a collection of fuzzy IF-THEN rules. In this paper multiple-
input single-out(MISO) rules will be used in the formulation
of the control law. The MISO IF-THEN rule(s) are of the
form

RY . IFziisAland - and 1, is A%, THEN yis C’

2.1)
where x = (z,--,2n)T € VC R and y € W C R(de—
note the linguistic variables associated with the inputs and
output of the FLS. A7 and C' are labels of the fuzzy sets
in V and W, respectively, and 1 denotes the number of in-
put(state) of FLS, i.e., 1 = 1,2,---,n, and j denotes the
number of rules of FLS, i.e., 7 = 1,2,.--, M. Fuzzy rule
(2.1) can be implemented using fuzzy implication, which
gives

Al x o x AL~ CF (2.2)



which is a fuzzy set defined in the product space V x W.
Based on generalizations of implications in multivalue logic,
many fuzzy implication rules have been proposed in the
fuzzy logic literature. In this paper, we define the impli-
cation rule used t-norm operator, which gives

uA‘; X xA) —Ci3 ()—(’ y)
=p(@)x o xpy (@a) xucily)  (2.3)
where * denotes t-norm, which corresponds to the conjunc-
tion ”min” or ”product” in general.

2.2 Fuzzy Inference FEngine

The fuzzy inference engine performs a mapping from
fuzzy sets in V to fuzzy sets in R, based upon the fuzzy
IF-THEN rules in fuzzy rule base and the compositional
rule of inference.
Let B be a fuzzy set in V, then the fuzzy relational equation
Bo R?, where ”0” is the sup-star composition, results in M
fuzzy stes. Using the t-norm operator yields

ppors(y) = supxuB(X) % 1 piy i _ci(® )] (24)

In order to combine the M fuzzy sets into one fuzzy set
t-norm can be employed, which results in

Bao(rt, . R (Y) = porm) ()4 Frporon (¥)  (2.5)

where + denotes the t~conorm(s-norm), the most commonly
used operation for + is max”. If we use the product op-
eration and choose * in (2.3) and (2.4) to be an algebraic
product, then the inference is called product inference. Us-
ing product inference, (2.4) becomes

#pori (¥) = supxev[ns(X)n 45 (21) - 45 (Zn)bics (¥))-
(2.6)
2.8 Fuzzifier

The fuzzifier maps a crisp point x into a fuzzy set B in
V. In general, there are two possible choice of this mapping
namely, singleton or nonsiglecton. In this paper, we use the
sigleton fuzzifier mapping, i.e.,

1 for (x)=x

i e V.
0 for otherwise’ for x' €

pp(x’) = (2.7)

2.4 Defuzzifier

The defuzzifier maps fuzzy sets in R to a crisp point
in R. In general, there are three possible choices of this
mapping namely, maximum, center-average, and modified
center-average defuzzifier. In this paper, we use the center-
average defuzzifier mapping, i.e.,

_ T5 ¥ et (87)
Z;M=1 (I‘BoR(J) (7))

(2.8)

where §’is the point in R at which po; achieves its maxi-
mum value (assume that po;(5’) = 1).

2.5 Fuzzy Bases Function
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The fuzzy logic system with center-average defuzzifier
(2.8), product inference (2.6), and singleton fuzzifier (2.7)
is of the following form:

EJA:1 gJ(H:‘=1 ;I,A{(:L‘.‘))
3 ([T b 03 (20))

If we fix the g ,;(2:)’s and view the §’’s as adjustable pa-

y(x) =

rameters, then (2.9) can be writen as

y(x) =07¢(x)

"1gM)T

(2.10)

where 8 = (g, - is a parameter vector, and £(x) =
(€'(x), -, €M(x))7 is a regressive vector with the regressor
&(x) defined as

n

H.‘:l B Al (z4)
Yt Ty s (2)

which are called FBFs(fuzzy bases functions). These FBFs
have been proved in [3] that they are universal approxima-
tors. We can fix all the parameters in &’(x) at the very
beginning of the FBF expansion design procedure, so that
the only free design parameters are 6;. In this paper, we
use this fuzzy logic system constructed FBFs with adaptive
paramater vector 8 as an alternative of unknown function
»* which is optimal control input in nonlinear inversion con-
troller design under assumption that f is completely known.
In this fuzzy modeling, however, we have to consider the er-
ror, the minimum approximation error. Therefore we have
to find the update laws for the parameter vector § and w
which grauntee the global stability. In later sections, we
review three types of update law based on SG algorithm
which can be found in formal and apply it to the adaptive
fuzzy control scheme.

£(x) = (2.11)

3. SPEED-GRANDIENT ALGORITHM

In this section, we shall introduce speed gradient algo-
rithm and discuss three types of parameter update law with
the stability analysis by using Lyapunov stability theory.
Then we shall derive the new three types of parameter up-
date laws based on the error dynamics derived in the previ-
ous section. First, we shall introduce the definition of con-
vex function and the well known theorem concerning convex
function briefly. Its contents play important role in the sta-
bility analysis of speed gradient algorithm.

Definition 3.1 Let S be a conver set in R™ and let f :
S — R' be a real-valued function. We say that f is a convex
function on S if and only if f[Az1+(1—-A)z2] < Af(z1)+(1—
A f(z2) forallz1,z2 € S and for all A such that0 < A < 1.

Note that convex functions are not defined if the domain is
not a convex set.

Theorem 3.1 Let S be a convez set in R™ and suppose that
f:S — R is conver. Let z° be an interior point of S.
(a) Then there are real numbers ay,az, - -,an such that

f(3) 2 f(zo) + 3 _ai(zi —2?) , where z€S.  (3.1)

=1



(b) If f € C! Li.e., first derivative of function f is contin-
uous, on S(%, where S(° denotes the set of interior points
of S, then

= o

= . 1=1,-,n.
0% |z g0 e

a; (3.2)
proof: See [11]
In general error dynamics of adaptive control system is a

non-linear differential equation and can be expressed as

z{t) = F(z,¢,1), t>0. (3.3)

Where z(t) € R™ is an error state vector, ¢(t) € R™

is a parameter estimation error vector (¢(t) = 6(t) — 6* ),

F(:): R™™*! , R™ is a continuously differentiable vec-

tor function in z,8 . The control problem is to find the
parameter update law

0(t) = ©(xs, 66, 1), (3.4)
according to some criterion of “good” functioning of the sys-
tem, where notation z4 and 65 mean the set {=z(s),0 <8<t
1o é(s),O < s <t} respectively. Suppose this crite-
rion requires to provide low values of some aim functional
Q: = Q(z4,6¢,t). Typically Q;may be local form such as
Qi = Q(z(t),t), where Q(z(t),t) > 0 is a scalar smooth
aim functional. Let us define a function r(z,6,t) as time
derivative of Q. (the speed of @}; which changes along the
trajectory of system). Then

m(z,0,1) = (V.Q)T F(z,6,t) + V.Q (3.5)
where V;Q, and V.Q denote the gradients of Q in z and
t respectively.
With the above definition, we will introduce three types of
parameter update law proposed by Fradkov.

Algorithm 3.1 .
(differential type)

é(t) = —TVyr(z,6,1) (3.6)
(integral type)

0(t) = —w(z,é, t) — F/ Vér(z,é,s)ds (3.7)

(finite type)

6(t) = 0°(z, ) ~ 1(z, )6(z,6,1)

where [ is a symmetric, positive definite matrix, () satis-
fies pseudo gradientity condition, i.e., wTVér > 0, where

(3.8)

V47 denotes the gradient of 7 in § and v(z,t) > 0 is a scalar.

Theorem 3.2 (8] Let system (3.8),(3.7) have unique so-
lution for any initial conditions z(0),6(0), and functions
F(z,é,t), V:Q(z,t), ¥(z,1), Vr(z,é,t) be locally bounded
int (bounded in some region {(z,6,1) : EA +]|6]] € 8 < oo,
for t > 0} ) and following conditions beheld:

(a) Growth condition: inf, Q(z,t) — oo as ||z}l — oo .

(b) Convegity condition: function 7(z,0,1) is conver in § .
(c) Attainability condition: vector 8* € R™ and a function
p(Q) exists such that p(Q) > 0 when Q > 0 and

r(z,8%,1) < ~p(Q).

Then all solutions of system (3.3),(8.7) are bounded and
Q:—0ast— 00 .

(3.9)

Proof: The proof is based on the Lyapunov-like function

1 * A — A * A
Vi= Qe (6(1)=0"+9(=,0,0) T (0(1) = 0" +p(s,6,1))
(3.10)
The time derivative of V; along a trajectory of the system
is given by

Vi=Qu~(8(t) — 8" +4(z,0,0) V,7(z,8%,1). (3.11)

From the pseudo gradientity condition ’(/)TVéT >0, and
convexity and attainability condition, the following inequal-
ities can be drived:

Vo < 7(z,8,t) = (6(t) - 0" V;r(z5,0%,1)
< r(z,0%,1). (3.12)
From (3.9),(3.12), Vi can be expressed as
Vi <r(z,8%,1) < —p(Q) < 0. (3.13)

Therefore Q; — 0 ast — oo . |

Theorem 3.3 Let conditions of theorem 8.2 are fulfilled
with p(Q) = 0 in (3.8). Then all solutions of system
(3.8),(3.6) are bounded. '

Proof: The proof is similar to Theorem 4.2 but in this case,
Ve <7(2,6%,1) < —p(Q) < 0. (3.14)
Therefore we can assure that Q; is bounded. 1

Theorem 3.4 Let conditions of theorem 3.2 are fulfileed as
well as strong pseudo gradientity condition

zj)(:v,t)TVéT(:c,é,t) > n”Vér(z,é,t)|l6 {3.15)
for some £ > 0 and § > 1 and inequality
(2, )| Var(e,6,1))1°7" 2 1/6° ~ 67 (3.16)

then all the solutions of system (3.3),(8.8) are bounded and
Q:—0ast— oo .

Proof: Let V; = Q;. The time derivative of V; along the
system trjectory is given by

‘./t = Qt = T(:l,‘,é,t)

By convexity condition,

(3.17)

Vi = 1(2,6,t) <7(z,8",t)+ (6 —-6")"V,r
= r(z,8" )+ (6 —-0°) Vyr+(8°—0")TV,r
= 7(z,0%t) — v(z,0)%(z,0,0)T V7
+ (8°-6%)"V,r (3.18)
From (3.15),
A < 7(z,8%,1) - n‘r(:c,t)|]Vér(z,(§,t)||6
+ (8°=6")"V,r
< (2,8, t) — ky(z,1)||V4r(z, 0, 1)||°
+  116° = 87|IiVsrli (3.19)
From (3.16),
Ve < 1(x,8%,t) < —p(Q) < 0. (3.20)
Therefore Q¢ — 0 as t — oo . [ ]
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4. ADAPTIVE FUZZY CONTROL BASED ON SG
ALGORITHM

In this section, we propose the three types of update law
for nonlinear system which can be represented as a normal
form. These update laws are developed by using fuzzy logic
system and SG algorithm studied in previous section.

Consider the nth-order nonlinear systems of the form

(™ = £(x) + bu, (4.1)

where f is an unknown continuous function, b is a positive
known constant, and « € R and y € R are the input and
output of the system, respectively. We assume that the state
vector x (1,22, -, zn)T = (z,%,---, z("_l))T € R"
is available for measurement. In the spirit of the nonlinear
control literatures, these systems are in normal form and
have the relative degree equal to n. The control objective is
to force the state y to follow a given bounded reference signal
ym(t), under the constraint that all signals involved must be
bounded. More specifically, we now design adaptive fuzzy
controller that achieve the following control objectives.

Control Objectives Derive a feedback control
u u(x|#) + & (bassed on fuzzy logic systems) and
an speed gradient adaptive laws for adjusting the parame-
ter vector @ such that the following two conditions are met

1) The closed-loop system must be globally stable in the
sense that all variables, x(t),8(t) and u(x|8), must be uni-
formly bounded; e, [x(1)] < M; < 00,|0(t)] < Mp < oo,
and {u(x]|8)}] < M. < oc for all t > 0, where M;, My and
M, are design parameters specified by the designer.

2) The tracking error,e = ym — y, should be as small as
possible under the constraints in 1). If the function f and
the constant b are known, then by using the following

* 1 n
w = p(—f) + v + KTe). (4.2)
We obtain error dynamics as follows from (4.1)
™ + ke 4 4 kne=0, (4.3)

if we choose k appropriately, we can achive the quarantee
that lim;_. . e(t) = 0. We define minimun approximation
error w as follows [3), i.e.,

w = uc(x]|8%) —u*, (4.4)

and let & be a estimation of w.

Generally f is unknown, the optimal control u* cannot be
implemented. Our purpose is to design a fuzzy logic system
to approximate this optimal control.

Suppose that the control u is the summation of a
fuzzy control u.(x|6) and approximate compensation input
Uy = W

v = uc(x|8) + @ (4.5)

where u.(x|6) is a fuzzy logic system in the form of (2.10)
or (2.11). Substituting (4.4) into (4.1), we have

2™ = f(x) + bluc(x|f) + @)

Now adding and substructing bu* to (4.5) and after some
straightforward manipulation, we obtain the error equation
governing the closed-loop system:

(4.6)
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™ = —kTe + bu" — uc(x]0) — @) (4.7)
or, equivalently,
&= Ace +by(u” — uc(x]6) - &) (4.8)
where
0 1 0 0 0 0
0 0 1 0 0 0
Ac = )
0 0 0 0 0 1
—kn  —kn_1 —ki
b, = (0,0,---,0,0)7. (4.9)

In order to apply the speed gradient adaptive law, We
choose the aim functional as follows

(4.10)

where P is positive definite symmetric matrix satisfying
the Lyapunov equation

ATP 4+ PA. = —Q, where Q@ > 0.

T=Q =¢"P(Ace+ b (~w+¢TE(X) + @)  (4.11)

where ¢ = 8* — 8. From the above equation, we can see
that 7(x,6,t) is linear in terms of §,& and that r(x,6,1)
is convex function in §,&. Now we choose ¥1(x,8,t) and
¥2(x, @, t) defined in speed gradient algorithm as follow such
that it satisfy pseudo gradient condition, i.e., ¥7 Vor >
0,97 Vsr > 0.

Vor = —e” Pb.£(x)
Vor = c_sTPbc

i(x, 9)
P2 (x, @)

From the above discussion, we can see that all the con-
ditions of theorem( growth condition, convexity condition
and attainability condition) are satisfied. Therefore we can
propose the following new three types of parameter update
law for the adaptive control of nonlinear system which gau-
rantee the stability of the over all system.

(4.12)
(4.13)

Algorithm 4.2 .

(differential type)

§ = TePbe(a), (4.14)
o = —CePy,. (4.15)
(integral type)
t
b = —¢1(:g,0,t)+r/ e’ Pb t(2)ds  (4.16)
0
o = _wz(;,a;,t)~r/ e’ Pb_ds. (4.17)
0
(finite type)
0(ty = 8%z, t) —vi(z, ) (z,0,1) (4.18)
o(t) = &%z, t) — v2(z, )a(z,@,t) (4.19)



5. CONCLUSION

In this paper, we developed an adaptive fuzzy controller
1) which does not require an accurate mathematical model
of the system under control, 2) is capable of incorporat-
ing fuzzy control rules directly into the controllers, 3) gau-
rantees the global stability of the resulting closed-loop sys-
tem in the sense that all signals involved are uniformely
bounded, and 4) has three types of update laws which are
formally obtained by the SG algorithm. And it is also shown
that the parameter update law which was considered by
Wang is a special type among the three types of parameter
update law proposed in this paper. As a further study, we
will look for a fuzzy modeling which can’t be made as a
normal form as a fuzzy liguistic model which is able to pro-
duce the error dynamics and then design the fuzzy adaptive
controller based on SG algorithm.
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