• Title/Summary/Keyword: Nonleaving group

Search Result 17, Processing Time 0.024 seconds

Aminolyses of 2,4-Dinitrophenyl 2-Furoate and Benzoate: Effect of Nonleaving Group on Reactivity and Mechanism

  • Um, Ik-Hwan;Chun, Sun-Mee;Akhtar, Kalsoom
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.220-224
    • /
    • 2007
  • Second-order rate constants (kN) have been determined spectrophotometrically for reactions of 2,4-dintrophenyl 2-furoate (2) with a series of alicyclic secondary amines in 80 mol % H2O/20 mol % dimethyl sulfoxide (DMSO) at 25.0 oC. The furoate 2 is more reactive than 2,4-dintrophenyl benzoate (1) toward all the amines studied. The higher acidity of 2-furoic acid (pKa = 3.16) compared with benzoic acid (pKa = 4.20) has been suggested to be responsible for the reactivity order, at least in part. The Brønsted-type plots for the reactions of 1 and 2 are curved downwardly, indicating that the aminolyses of both 1 and 2 proceed through a zwitterionic tetrahedral intermediate (T±) with a change in the rate-determining step on changing the amine basicity. Dissection of the kN values into their microscopic rate constants has revealed that the pKao and k2/k-1 ratios for the reactions of 1 and 2 are identical, indicating that the nature of the nonleaving group (i.e., benzoyl and 2-furoyl) does not affect the reaction mechanism. The k1 values have been found to be larger for the reactions of 2 than for those of 1, which is fully responsible for the fact that the former is more reactive than the latter.

Theoretical Studies on the Reactions of Acetate Esters with Substituted Phenolate Anion Nucleophiles$^1$

  • Im, Ung Muk;Kim, Wang Gi;Jeong, Hak Jin;Lee, Ik Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.3
    • /
    • pp.252-256
    • /
    • 1995
  • Semiempirical MO calculations using the PM3 method are performed on the reactions of acetate esters with substituted phenolate anions. The mechanistic change from rate-limiting formation to breakdown of the anionic intermediate is shown to occur in the gas-phase, especially for meta-nitrophenyl acetate. However the mechanistic change-over takes place at a lower basicity ($pK_0$) of the anion nucleophile than found for the corresponding formate. This lowering of $pK_0$ has been ascribed to the electron donating effect of the methyl group in the acetate. For the reactions involving rate-limiting breakdown of the intermediate, the large Bronsted coefficients, ${\beta}_X({\beta}_{nuc})$, are expected in general, but the magnitude increases to a larger value and the pK0 is lowered accordingly, when an electron-donating nonleaving group, like $CH_3$, is present. This type of nonleaving group effect provides a necessary condition for the carbonyl addition-elimination mechanism with rate-limiting breakdown of the intermediate.

A Kinetic Study on Nucleophilic Substitution Reactions of Phenyl Y-Substituted-Phenyl Carbonates with Z-Substituted-Phenoxides: Effect of Modification of Nonleaving Group from Benzoyl to Phenyloxycarbonyl on Reactivity and Reaction Mechanism

  • Min, Se-Won;Kim, Min-Young;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3253-3257
    • /
    • 2012
  • Second-order rate constants for the reactions of phenyl Y-substituted-phenyl carbonates 5a-g with Z-substituted-phenoxides ($k_{Z-PhO^-}$) have been measured spectrophotometrically in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. 4-Nitrophenyl phenyl carbonate (5e) is up to 235 times more reactive than 4-nitrophenyl benzoate (4e). The Br$\o$nsted-type plot for the reactions of 5e with Z-substituted-phenoxides is linear with ${\beta}_{nuc}=0.54$, which is typical for reactions reported previously to proceed through a concerted mechanism. Hammett plots correlated with ${\sigma}^o$ and ${\sigma}^-$ constants for the reactions of 5a-f with 4-chlorophenoxide exhibit highly scattered points. In contrast, the Yukawa-Tsuno plot results in an excellent linear correlation with ${\rho}_Y=1.51$ and r = 0.52, indicating that the leaving-group departure occurs at the rate-determining step (RDS). A stepwise mechanism, in which leaving-group departure occurs at RDS, has been excluded since the incoming 4-$ClPhO^-$ is more basic and a poorer nucleofuge than the leaving Y-substituted-phenoxides. Thus, the reaction has been concluded to proceed through a concerted mechanism. Our study has shown that the modification of the nonleaving group from benzoyl to phenyloxycarbonyl causes a change in the reaction mechanism (i.e., from a stepwise mechanism to a concerted pathway) as well as an increase in the reactivity.

Aminolysis of 2,4-Dinitrophenyl 2-Furoate and 2-Thiophenecarboxylate: Effect of Modification of Nonleaving Group from Furoyl to Thiophenecarbonyl on Reactivity and Mechanism

  • Um, Ik-Hwan;Min, Se-Won;Chuna, Sun-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1359-1363
    • /
    • 2008
  • Second-order rate constants have been determined spectrophotometrically for reactions of 2,4-dinitrophenyl 2- thiophenecarboxylate (2) with a series of alicyclic secondary amines in 80 mol % $H_2O$/20 mol % DMSO at 25.0 ${\pm}$ 0.1 ${^{\circ}C}$. The Brønsted-type plot exhibits a downward curvature, i.e., the slope decreases from 0.74 to 0.34 as the amine basicity increases. The $pK_a$ at the center of the Brønsted curvature, defined as $pK_a^o$, has been determined to be 9.1. Comparison of the Brønsted-type plot for the reactions of 2 with that for the corresponding reactions of 2,4-dinitrophenyl 2-furoate (1) suggests that reactions of 1 and 2 proceed through a common mechanism, although 2 is less reactive than 1. The curved Brønsted-type plot has been interpreted as a change in RDS of a stepwise mechanism. The replacement of the O atom in the furoyl ring by an S atom (1 $\rightarrow$ 2) does not alter the reaction mechanism but causes a decrease in reactivity. Dissection of the apparent second-order rate constants into the microscopic rate constants has revealed that the $k_2/k_{-1}$ ratio is not influenced upon changing the nonleaving group from furoyl to thiophenecarbonyl. However, $k_1$ has been calculated to be smaller for the reactions of 2 than for the corresponding reactions of 1, indicating that the C=O bond in the thiophenecarboxylate 2 is less electrophilic than that in the furoate 1. The smaller k1 for the reactions of 2 is fully responsible for the fact that 2 is less reactive than 1.

Aminolysis of Y-Substituted Phenyl 2-Thiophenecarboxylates and 2-Furoates: Effect of Modification of Nonleaving Group from 2-Furoyl to 2-Thiophenecarbonyl on Reactivity and Mechanism

  • Um, Ik-Hwan;Min, Se-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.585-589
    • /
    • 2008
  • Second-order rate constants (kN) have been measured for reactions of Y-substituted phenyl 2-thiophenecarboxylates (6a-h) with morpholine and piperidine in 80 mol % H2O/20 mol % DMSO at 25.0 0.1 oC. The Brnsted-type plot for the reactions of 6a-h with morpholine is linear with b lg = 1.29, indicating that the reactions proceed through a tetrahedral zwitterionic intermediate (T?). On the other hand, the Brnsted-type plot for the reactions of 6a-h with piperidine exhibits a downward curvature, implying that a change in the rate-determining step occurs on changing the substituent Y in the leaving group. Dissection of kN into microscopic rate constants (i.e., k1 and k2/k1 ratio) has revealed that k1 is smaller for the reactions of 6a-h than for those of Y-substituted phenyl 2-furoates (5a-h), while the k2/k1 ratio is almost the same for the reactions of 5a-h and 6a-h. It is also reported that modification of the nonleaving group from the furoyl (5a-h) to the thiophenecarbonyl (6a-h) does not influence pKao (defined as the pKa at the center of the Brnsted curvature) as well as the k2/k1 ratio.

Effect of Nonleaving Group on the Reaction Rate and Mechanism: Aminolyses of 4-Nitrophenyl Acetate, Benzoate and Phenyl Carbonate

  • Um, Ik-Hwan;Park, Hye-Ran;Kim, Eun-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1251-1255
    • /
    • 2003
  • Second-order rate constants have been determined spectrophotometrically for the reaction of phenyl 4-nitrophenyl carbonate with a series of primary amines in $H_2O$ containing 20 mol % DMSO at 25.0 ${\circ}$C. The Bronsted-type plot is linear with a ${\beta}_{nuc}\;0.69 {\pm} 0.04$, which is slightly smaller than the ${\beta}_{nuc}$ values for the reactions of 4-nitrophenyl acetate ( $\beta_{nuc}= 0.82 {\pm} 0.03$) and benzoate ( $\beta_{nuc} = 0.76 {\pm} 0.01$), indicating that the reaction proceeds through a tetrahedral zwitterionic intermediate $T^{\pm}$. The carbonate is more reactive than the corresponding acetate and benzoate. The changing Me (or Ph) to PhO has resulted in a decrease in the ${\beta}_{nuc}$ value without changing the reaction mechanism but an increase in the reactivity. The electronic effect of the substituent in the nonleaving group appears to be responsible for the enhanced reactivity of the carbonate compared with the corresponding acetate and benzoate.

Kinetics and Reaction Mechanism of Aminolyses of Benzyl 2-Pyridyl Carbonate and t-Butyl 2-Pyridyl Carbonate: Effect of Nonleaving Group on Reactivity and Reaction Mechanism

  • Kang, Ji-Sun;Lee, Jae-In;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1551-1555
    • /
    • 2012
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for the reactions of benzyl 2-pyridyl carbonate $\mathbf{7}$ and $t$-butyl 2-pyridyl carbonate $\mathbf{8}$ with a series of alicyclic secondary amines in $H_2O$ at $25.0^{\circ}C$. Substrate $\mathbf{8}$ is less reactive than $\mathbf{7}$. Steric hindrance exerted by the bulky $t$-Bu group of $\mathbf{8}$ has been suggested to be responsible for the decreased reactivity. The Br${\o}$nsted-type plots for the reactions of $\mathbf{7}$ and $\mathbf{8}$ are linear with ${\beta}_{nuc}=0.49$ and 0.44, respectively, which is typical for reactions reported previously to proceed through a concerted mechanism. Aminolyses of $\mathbf{7}$ and $\mathbf{8}$ were expected to proceed through a zwitterionic tetrahedral intermediate $T^{\pm}$, which would be stabilized through an intramolecular H-bonding interaction. However, the kinetic results suggest that the reactions proceed through a concerted mechanism. The H-bonding interaction in $T^{\pm}$ has been suggested to accelerate the rate of leaving-group expulsion from $T^{\pm}$. Another factor that might accelerate expulsion of the leaving group is the "push" provided by the RO group in $T^{\pm}$ through resonance interactions. Thus, it has been concluded that the enhanced nucleofugality through the H-bonding interaction and the "push" provided by the RO group forces the reactions to proceed through a concerted mechanism.

Pyridinolyses of 2,4-Dinitrophenyl Phenyl Carbonate and 2,4-Dinitrophenyl Benzoate: Effect of Nonleaving Group on Reactivity and Mechanism

  • Um, Ik-Hwan;Son, Min-Ji;Kim, Song-I;Akhtar, Kalsoom
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1915-1919
    • /
    • 2010
  • Second-order rate constants $(k_N)$ have been measured for reactions of 2,4-dinitrophenyl phenyl carbonate (2) with a series of pyridines in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$ and compared with the $k_N$ values reported for the corresponding reactions of 2,4-dinitrophenyl benzoate (1) to investigate the effect of nonleaving group on reactivity and mechanism. The reactions of 2 result in larger $k_N$ values than those of 1. The Br${\o}$nsted-type plot for the reactions of 2 exhibits a downward curvature (i.e., ${\beta}2$ = 0.84 and ${\beta}1$ = 0.16), which is typical for reactions reported to proceed through a stepwise mechanism with a change in rate-determining step. The $pK_a$ at the center of the Br${\o}$nsted curvature, defined as $pK_a{^{\circ}}$, has been found to be 8.5 and 9.5 for the reactions of 2 and 1, respectively. Dissection of $k_N$ into the microscopic rate constants (e.g., $k_1$ and $k_2/k_{-1}$ ratio) has revealed that the reactions of 2 result in larger k1 values than those of 1, indicating that PhO behaves as a stronger electron-withdrawing group than Ph. However, the $k_2/k_{-1}$ ratio has been found to be independent of the electronic nature of Ph and PhO.

Aminolysis of S-4-Nitrophenyl X-Substituted Thiobenzoates: Effect of Nonleaving-Group Substituents on Reactivity and Mechanism

  • Im, Li-Ra;Jeon, Sang-Eun;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1153-1157
    • /
    • 2011
  • A kinetic study is reported for aminolysis of S-4-nitrophenyl X-substituted thiobenzoates 3a-g in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. Thiol esters 3a-g are 7.8-47.6 fold more reactive than the corresponding oxygen esters (i.e., 4-nitrophenyl X-substituted benzoates 1a-g). Such reactivity order appears to be in accordance with the expectation that 4-nitrothiophenoxide in 3a-g is a better nucleofuge than 4-nitrophenoxide in 1a-g since the former is 2.64 pKa units less basic than the latter. Hammett plot for the reactions of 3a-g exhibit poor correlation coefficients ($R^2$ = 0.977-0.986) with negative deviation by substrates possessing an electrondonating group (EDG), while the Yukawa-Tsuno plots result in excellent linear correlation ($R^2$ = 0.995-0.997) with ${\rho}$ = 0.93-1.23 and r = 0.57-0.67, indicating that the negative deviation shown by substrates possessing an EDG is caused by ground-state stabilization through resonance interactions but not due to a change in ratedetermining step upon changing the nonleaving-group substituent X. The ${\rho}$ value increases as the incoming amine becomes more basic and more reactive, indicating that the RSP is not operative in the current reactions.

Theoretical Studies on the Acyl Transfer Reactions Involving a Tetrahedral Intermediate$^\dag$

  • 이도영;김창곤;이본수;이익준
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.12
    • /
    • pp.1203-1208
    • /
    • 1995
  • Theoretical studies of the effect of the nonleaving group (RY) on the breakdown mechanism of the tetrahedral anionic intermediate, T-, formed by the addition of a less basic phenoxide nucleophile (X) to phenyl benzoates with a more basic phenoxide leaving group (Z) have been carried out using the PM3 MO method. The identity acyl transfer reactions (X=Z) are facilitated by an electron-withdrawing RY whereas they are inhibited by an electron-donating RY group. The results of non-identity acyl transfer reactions indicate that a more electron-donating RY group leads to a greater lowering of the higher barrier, TS2, with a greater degree of bond cleavage, and a greater negative charge development on the phenoxide oxygen atom, whereas the opposite is true for a more electron-withdrawing RY group, i.e., leads to a greater lowering of the lower barrier, TS1. The results provide theoretical basis for the signs of ρXY(>0) and ρYZ(<0) observations.