DOI QR코드

DOI QR Code

Aminolyses of 2,4-Dinitrophenyl 2-Furoate and Benzoate: Effect of Nonleaving Group on Reactivity and Mechanism

  • Um, Ik-Hwan (Division of Nano Sciences and Department of Chemistry, Ewha Womans University) ;
  • Chun, Sun-Mee (Division of Nano Sciences and Department of Chemistry, Ewha Womans University) ;
  • Akhtar, Kalsoom (Division of Nano Sciences and Department of Chemistry, Ewha Womans University)
  • Published : 2007.02.20

Abstract

Second-order rate constants (kN) have been determined spectrophotometrically for reactions of 2,4-dintrophenyl 2-furoate (2) with a series of alicyclic secondary amines in 80 mol % H2O/20 mol % dimethyl sulfoxide (DMSO) at 25.0 oC. The furoate 2 is more reactive than 2,4-dintrophenyl benzoate (1) toward all the amines studied. The higher acidity of 2-furoic acid (pKa = 3.16) compared with benzoic acid (pKa = 4.20) has been suggested to be responsible for the reactivity order, at least in part. The Brønsted-type plots for the reactions of 1 and 2 are curved downwardly, indicating that the aminolyses of both 1 and 2 proceed through a zwitterionic tetrahedral intermediate (T±) with a change in the rate-determining step on changing the amine basicity. Dissection of the kN values into their microscopic rate constants has revealed that the pKao and k2/k-1 ratios for the reactions of 1 and 2 are identical, indicating that the nature of the nonleaving group (i.e., benzoyl and 2-furoyl) does not affect the reaction mechanism. The k1 values have been found to be larger for the reactions of 2 than for those of 1, which is fully responsible for the fact that the former is more reactive than the latter.

Keywords

References

  1. Jencks, W. P. Chem. Rev. 1985, 85, 511-527 https://doi.org/10.1021/cr00070a001
  2. Castro, E. A. Chem. Rev. 1999, 99, 3505-3524 https://doi.org/10.1021/cr990001d
  3. Page, M. I.; Williams, A. Organic and Bio-organic Mechanisms; Longman: Harlow, U.K., 1997; Chapter 7
  4. Castro, E. A.; Aliaga, M.; Gazitua, M.; Santos, J. G. Tetrahedron 2006, 62, 4863-4869 https://doi.org/10.1016/j.tet.2006.03.013
  5. Castro, E. A.; Campodonico, P. R.; Contreras, R.; Fuentealba, P.; Santos, J. G.; Leis, J. R.; Garcia-Rio, L.; Saez, J. A.; Domingo, L. R. Tetrahedron 2006, 62, 2555-2562 https://doi.org/10.1016/j.tet.2005.12.044
  6. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Org. Chem. 2005, 70, 8088-8092 https://doi.org/10.1021/jo051168b
  7. Campodonico, P. R.; Fuentealba, P.; Castro, E. A.; Santos, J. G.; Contreras, R. J. Org. Chem. 2005, 70, 1754-1760 https://doi.org/10.1021/jo048127k
  8. Castro, E. A.; Aliaga, M.; Evangelisti, S.; Santos, J. G. J. Org. Chem. 2004, 69, 2411-2416 https://doi.org/10.1021/jo035451r
  9. Sung, D. D.; Koo, I. S.; Yang, K. Y.; Lee, I. Chem. Phys. Lett. 2006, 426, 280-284 https://doi.org/10.1016/j.cplett.2006.06.015
  10. Oh, H. K.; Oh, J. Y.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 5624-5629 https://doi.org/10.1021/jo050606b
  11. Oh, H. K.; Jin, Y. C.; Sung, D. D.; Lee, I. Org. Biomol. Chem. 2005, 3, 1240-1244 https://doi.org/10.1039/b500251f
  12. Oh, H. K.; Park, J. E.; Sung, D. D.; Lee, I. J. Org. Chem. 2004, 69, 9285-9288 https://doi.org/10.1021/jo0484676
  13. Oh, H. K.; Park, J. E.; Sung, D. D.; Lee, I. J. Org. Chem. 2004, 69, 3150-3153 https://doi.org/10.1021/jo049845+
  14. Hwang, J. Y.; Yang, K. Y.; Koo, I. S.; Sung, D. D.; Lee, I. Bull. Korean Chem. Soc. 2006, 27, 733-738 https://doi.org/10.5012/bkcs.2006.27.5.733
  15. Baxter, N. J.; Rigoreau, L. J. M.; Laws, A. P.; Page. M. I. J. Am. Chem. Soc. 2000, 122, 3375-3385 https://doi.org/10.1021/ja994293b
  16. Spillane, W. J.; McGrath, P.; Brack, C.; O'Byrne, A. B. J. Org. Chem. 2001, 66, 6313-6316 https://doi.org/10.1021/jo015691b
  17. Gordon, I. M.; Maskill, H.; Ruasse, M. F. Chem. Soc. Rev. 1989, 18, 123-151 https://doi.org/10.1039/cs9891800123
  18. Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715-7720 https://doi.org/10.1021/jo061308x
  19. Um, I. H.; Jeon, S. E.; Seok, J. A. Chem. Eur. J. 2006, 12, 1237-1243 https://doi.org/10.1002/chem.200500647
  20. Um, I. H.; Kim, E. J.; Park, H. R.; Jeon, S. E. J. Org. Chem. 2006, 71, 2302-2306 https://doi.org/10.1021/jo052417z
  21. Um, I. H.; Lee, J. Y.; Lee, H. W.; Nagano, Y.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2005, 70, 4980-4987 https://doi.org/10.1021/jo050172k
  22. Um, I. H.; Chun, S. M.; Bae, S. K. Bull. Korean Chem. Soc. 2005, 26, 457-460 https://doi.org/10.5012/bkcs.2005.26.3.457
  23. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6970-6980 https://doi.org/10.1021/ja00463a033
  24. Castro, E. A.; Santander, C. L. J. Org. Chem. 1985, 50, 3595-3600 https://doi.org/10.1021/jo00219a029
  25. Castro, E. A.; Valdivia, J. L. J. Org. Chem. 1986, 51, 1668v1672 https://doi.org/10.1021/jo00360a007
  26. Castro, E. A.; Steinfort, G. B. J. Chem. Soc., Perkin Trans. 2 1983, 453-457
  27. Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 7788-7791 https://doi.org/10.1021/jo051052f
  28. Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 3530-3536 https://doi.org/10.1021/jo050119w
  29. Castro, E. A.; Vivanco, M.; Aguayo, R.; Santos, J. G. J. Org. Chem. 2004, 69, 5399-5404 https://doi.org/10.1021/jo049260f
  30. Castro, E. A.; Aguayo, R.; Santos, J. G. J. Org. Chem. 2003, 68, 8157-8161 https://doi.org/10.1021/jo0348120
  31. Um, I. H.; Hwang, S. J.; Baek, M. H.; Park, E. J. J. Org. Chem. 2006, 71, 9191-9197 https://doi.org/10.1021/jo061682x
  32. Um, I. H.; Kim, K. H.; Park, H. R.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3937-3942 https://doi.org/10.1021/jo049694a
  33. Um, I. H.; Min, J. S.; Ahn, J. A.; Hahn, H. J. J. Org. Chem. 2000, 65, 5659-5663 https://doi.org/10.1021/jo000482x
  34. Um, I. H.; Hong, J. Y.; Seok, J. A. J. Org. Chem. 2005, 70, 1438-1444 https://doi.org/10.1021/jo048227q
  35. Um, I. H.; Chun, S. M.; Chae, O. M.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3166-3172 https://doi.org/10.1021/jo049812u
  36. Um, I. H.; Hong, J. Y.; Kim, J. J.; Chae, O. M.; Bae, S. K. J. Org. Chem. 2003, 68, 5180-5185 https://doi.org/10.1021/jo034190i
  37. Um, I. H.; Lee, J. Y.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006, 71, 5800-5803 https://doi.org/10.1021/jo0606958
  38. Um, I. H.; Han, H. J.; Ahn, J. A.; Kang, S.; Buncel, E. J. Org. Chem. 2002, 67, 8475-8480 https://doi.org/10.1021/jo026339g
  39. Tsuno, Y.; Fujio, M. Adv. Phys. Org. Chem. 1999, 32, 267-385 https://doi.org/10.1016/S0065-3160(08)60009-X
  40. Tsuno, Y.; Fujio, M. Chem. Soc. Rev. 1996, 25, 129-139 https://doi.org/10.1039/cs9962500129
  41. Yukawa, Y.; Tsuno, Y. Bull. Chem. Soc. Jpn. 1959, 32, 965-970 https://doi.org/10.1246/bcsj.32.965
  42. Fujio, M.; Rappoport, Z.; Uddin, M. K.; Kim, H. J.; Tsuno, Y. Bull. Chem. Soc. Jpn. 2003, 76, 163-169 https://doi.org/10.1246/bcsj.76.163
  43. Nakata, K.; Fujio, M.; Nishimoto, K.; Tsuno, Y. J. Phys. Org. Chem. 2003, 16, 323-335 https://doi.org/10.1002/poc.621
  44. Uddin, M. K.; Fujio, M.; Kim, H. J.; Rappoport, Z.; Tsuno, Y. Bull. Chem. Soc. Jpn. 2002, 75, 1371-1379 https://doi.org/10.1246/bcsj.75.1371
  45. Oh, H. K.; Woo, S. Y.; Shin, C. H.; Lee, I. Int. J. Chem. Kinet. 1998, 30, 849-857 https://doi.org/10.1002/(SICI)1097-4601(1998)30:11<849::AID-KIN7>3.0.CO;2-V
  46. Albert, A. Physical Methods in Heterocyclic Chemistry; Katritzky, A. R., Ed.; Acadmic Press: London, 1963; vol. 1, p 44
  47. Castro, E. A.; Moodie, R. B. J. Chem. Soc., Chem. Commun. 1973, 828-829

Cited by

  1. Kinetics of acylation of cyclohexylamine with substituted phenyl benzoates vol.82, pp.5, 2012, https://doi.org/10.1134/S1070363212050143
  2. Acylation of piperidine and morpholine with phenyl benzoates in the mixtures water-2-propanol and water-dioxane vol.85, pp.6, 2015, https://doi.org/10.1134/S1070363215060109
  3. Kinetics and mechanism of the pyridinolysis of diaryl carbonates vol.21, pp.9, 2008, https://doi.org/10.1002/poc.1399
  4. Kinetic Study on Michael-type Reactions of 1-Phenyl-2-propyn-1-one with Alicyclic Secondary Amines: Effect of Medium on Reactivity and Mechanism vol.29, pp.10, 2007, https://doi.org/10.5012/bkcs.2008.29.10.1911
  5. Reaction Mechanism and Structure of Transition State Determined from Analysis of Bronsted βnuc for Aminolysis of 4-Nitrophenyl Diphenylphosphinate vol.29, pp.12, 2007, https://doi.org/10.5012/bkcs.2008.29.12.2509
  6. Aminolysis of 3,4-Dinitrophenyl Cinnamate and Benzoate 2: Activation Parameters and Transition-State Structures vol.29, pp.3, 2008, https://doi.org/10.5012/bkcs.2008.29.3.575
  7. Kinetics and Mechanism of Azidolysis of Y-Substituted Phenyl Benzoates vol.29, pp.3, 2007, https://doi.org/10.5012/bkcs.2008.29.3.580
  8. Aminolysis of Y-Substituted Phenyl 2-Thiophenecarboxylates and 2-Furoates: Effect of Modification of Nonleaving Group from 2-Furoyl to 2-Thiophenecarbonyl on Reactivity and Mechanism vol.29, pp.3, 2007, https://doi.org/10.5012/bkcs.2008.29.3.585
  9. A Kinetic Study on Michael-type Reactions of 1-(X-Substituted Phenyl)-2-propyn-1-ones with Amines: Effect of Amine Nature on Reactivity and Mechanism vol.29, pp.4, 2007, https://doi.org/10.5012/bkcs.2008.29.4.767
  10. Aminolyses of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl 2-Furoates: Effect of ortho-Substituent on Reactivity and Mechanism vol.29, pp.4, 2007, https://doi.org/10.5012/bkcs.2008.29.4.772
  11. Aminolysis of 2,4-Dinitrophenyl 2-Furoate and 2-Thiophenecarboxylate: Effect of Modification of Nonleaving Group from Furoyl to Thiophenecarbonyl on Reactivity and Mechanism vol.29, pp.7, 2007, https://doi.org/10.5012/bkcs.2008.29.7.1359
  12. Kinetics and Mechanism of Michael-type Reactions of Ethyl Propiolate with Alicyclic Secondary Amines in H2O and MeCN: Solvent Effect on Reactivity and Transition-State Structure vol.30, pp.12, 2009, https://doi.org/10.5012/bkcs.2009.30.12.2909
  13. Piperidinolysis of 4-Nitrophenyl X-Substituted Benzenesulfonates and Related Compounds: Effect of Changing Leaving Group and Electrophilic Center vol.31, pp.1, 2007, https://doi.org/10.5012/bkcs.2010.31.01.234