DOI QR코드

DOI QR Code

Effect of Nonleaving Group on the Reaction Rate and Mechanism: Aminolyses of 4-Nitrophenyl Acetate, Benzoate and Phenyl Carbonate

  • Published : 2003.09.20

Abstract

Second-order rate constants have been determined spectrophotometrically for the reaction of phenyl 4-nitrophenyl carbonate with a series of primary amines in $H_2O$ containing 20 mol % DMSO at 25.0 ${\circ}$C. The Bronsted-type plot is linear with a ${\beta}_{nuc}\;0.69 {\pm} 0.04$, which is slightly smaller than the ${\beta}_{nuc}$ values for the reactions of 4-nitrophenyl acetate ( $\beta_{nuc}= 0.82 {\pm} 0.03$) and benzoate ( $\beta_{nuc} = 0.76 {\pm} 0.01$), indicating that the reaction proceeds through a tetrahedral zwitterionic intermediate $T^{\pm}$. The carbonate is more reactive than the corresponding acetate and benzoate. The changing Me (or Ph) to PhO has resulted in a decrease in the ${\beta}_{nuc}$ value without changing the reaction mechanism but an increase in the reactivity. The electronic effect of the substituent in the nonleaving group appears to be responsible for the enhanced reactivity of the carbonate compared with the corresponding acetate and benzoate.

Keywords

References

  1. Satterthwait, A. C.; Jencks, W. P. J. Am. Chem. Soc. 1974, 96, 7018. https://doi.org/10.1021/ja00829a034
  2. Page, M. I.; Williams, A. Organic and Bio-organic Mechanisms;Longman: Harlow, U.K., 1997; Chapter 7.
  3. Castro, E. A. Chem. Rev. 1999, 99, 3505. https://doi.org/10.1021/cr990001d
  4. Castro, E. A.;Cubillos, M.; Santos, J. G. J. Org. Chem. 2001, 66, 6000. https://doi.org/10.1021/jo0100695
  5. Castro, E. A.; Saavedra, C.; Santos, J. G.; Umana, M. I. J. Org.Chem. 1999, 64, 5401. https://doi.org/10.1021/jo990084y
  6. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002,67, 8995. https://doi.org/10.1021/jo0264269
  7. Lee, I.; Lee, H. W.; Lee, B. C.; Choi, J. H. Bull.Korean Chem. Soc. 2002, 23, 201. https://doi.org/10.5012/bkcs.2002.23.2.201
  8. Oh, H. K.; Park, C. Y.; Lee,J. M.; Lee, I. Bull. Korean Chem. Soc. 2001, 22, 383.
  9. Oh, H.K.; Kim, S. K.; Cho, I. H.; Lee, H. W.; Lee, I. J. Chem. Soc.,Perkin Trans. 2 2000, 2306.
  10. Oh, H. K.; Woo, S. Y.; Shin, C. H.;Park, Y. S.; Lee, I. J. Org. Chem. 1997, 62, 5780. https://doi.org/10.1021/jo970413r
  11. Koh, H. J.; Han,K. L.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 2002, 23, 715. https://doi.org/10.5012/bkcs.2002.23.5.715
  12. Um, I. H.; Lee, S. E.; Kwon, H. J. J. Org. Chem. 2002, 67,8999. https://doi.org/10.1021/jo0259360
  13. Um, I. H.; Min, J. S.; Ahn, J. A.; Hahn, H. J. J. Org.Chem. 2000, 5659.
  14. Um, I. H.; Lee, E. J.; Lee, J. P. Bull. KoreanChem. Soc. 2002, 23, 381. https://doi.org/10.5012/bkcs.2002.23.3.381
  15. Um, I. H.; Baek, M. H.; Han, H. J. Bull. Korean Chem. Soc. 2003, in press
  16. Um, I. H.; Hong, J. Y.;Kim, J. J.; Chae, O. M.; Bae, S. K. J. Org. Chem. 2003, in press
  17. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6963. https://doi.org/10.1021/ja00463a032
  18. Castro, E. A.; Araneda, C. A.; Santos, J. G. J. Org. Chem. 1997,62, 126. https://doi.org/10.1021/jo961275t
  19. Castro, E. A.; Steinfort, G. B. J. Chem. Soc., Perkin Trans. 2 1983, 453.
  20. Um, I. H.; Han, H. J.; Ahn, J. A.; Kang, S.; Buncel, E. J. Org. Chem. 2002, 67, 8475. https://doi.org/10.1021/jo026339g
  21. Um, I. H.; Choi, K. E.; Kwon, D. S. Bull. Korean Chem. Soc.1990, 11, 362.
  22. Um, I. H.; Chung, E. K.; Lee, S. M. Can. J.Chem. 1998, 76, 729. https://doi.org/10.1139/cjc-76-6-729
  23. Castro, E. A.; Freudenberg, M. J. Org. Chem. 1980, 45, 906. https://doi.org/10.1021/jo01293a027
  24. Castro, E. A.; Gil, F. J. J. Am. Chem. Soc. 1977, 99, 7611. https://doi.org/10.1021/ja00465a032
  25. Castro, E. A.; Ureta, C. J. Chem. Soc., Perkin Trans. 2 1991, 63.
  26. Castro, E. A.; Ibanez, F.; Salas, M.; Santos, J. G. J. Org. Chem.1991, 56, 4819. https://doi.org/10.1021/jo00016a002
  27. Castro, E. A.; Cubillos, M.; Ibanez, F.; Moraga, I.; Santos, J. G. J.Org. Chem. 1993, 58, 5400. https://doi.org/10.1021/jo00072a022
  28. Hansh, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165. https://doi.org/10.1021/cr00002a004
  29. Castro, E. A.; Ureta, C. J. Org. Chem. 1990, 55, 1676. https://doi.org/10.1021/jo00292a051
  30. Castro, E. A.; Ibanez, F.; Saitua, A. M.; Santo, J. G. J. Chem. Res.(S) 1993, 56.
  31. Bond, P. M.; Castro, E. A.; Moodie, R. B. J. Chem. Soc., PerkinTrans. 2 1976, 68.
  32. Bond, P. M.; Moodie, R. B. J. Chem. Soc., Perkin Trans. 2 1976,679.
  33. Castro, E. A.; Araneda, C. A.; Santos, J. G. J. Org. Chem. 1997,62, 126. https://doi.org/10.1021/jo961275t
  34. Oh, H. K.; Lee, J. Y.; Yun, J. H.; Park, Y. S.; Lee, I. Int. J.Chem. Kinet. 1998, 30, 419. https://doi.org/10.1002/(SICI)1097-4601(1998)30:6<419::AID-KIN4>3.0.CO;2-V
  35. Castro, E. A.; Ruiz, M. G.;Salinas, S.; Santos, J. G. J. Org. Chem. 1999, 64, 4817. https://doi.org/10.1021/jo990146k

Cited by

  1. A Kinetic Study on Nucleophilic Substitution Reactions of Phenyl Y-Substituted-Phenyl Carbonates with Z-Substituted-Phenoxides: Effect of Modification of Nonleaving Group from Benzoyl to Phenyloxycarbonyl on Reactivity and Reaction Mechanism vol.33, pp.10, 2012, https://doi.org/10.5012/bkcs.2012.33.10.3253
  2. -(4-nitropheny) S-(4-nitrophenyl) thio and dithiocarbonate vol.27, pp.4, 2013, https://doi.org/10.1002/poc.3231
  3. Kinetics and mechanism of the reactions ofS-4-nitrophenyl 4-methylthiobenzoate with secondary alicyclic amines and pyridines vol.19, pp.8-9, 2006, https://doi.org/10.1002/poc.1055
  4. Kinetics and mechanism of the pyridinolysis of diaryl carbonates vol.21, pp.9, 2008, https://doi.org/10.1002/poc.1399
  5. Nucleophilic Substitution Reactions of Aryl Thiophene-2-carbodithioates with Pyridines in Acetonitrile vol.25, pp.2, 2003, https://doi.org/10.5012/bkcs.2004.25.2.203
  6. Kinetic Studies on the Structure-Reactivity of Aryl Dithiomethylacetates vol.25, pp.7, 2003, https://doi.org/10.5012/bkcs.2004.25.7.1041
  7. Effect of Changing Electrophilic Center from Carbonyl to Sulfonyl Group on Electrophilicity vol.26, pp.3, 2003, https://doi.org/10.5012/bkcs.2005.26.3.457
  8. Kinetics and Mechanism of the Reactions of S-2,4-Dinitrophenyl 4-Substituted Thiobenzoates with Secondary Alicyclic Amines vol.70, pp.19, 2005, https://doi.org/10.1021/jo051052f
  9. Aminolysis of 2,4-Dinitrophenyl X-Substituted Benzoates and Y-Substituted Phenyl Benzoates in MeCN: Effect of the Reaction Medium on Rate and Mechanism vol.12, pp.4, 2003, https://doi.org/10.1002/chem.200500647
  10. Synthesis and Aminolysis of N,N-Diethyl Carbamic Ester of HOBt Derivatives vol.31, pp.1, 2003, https://doi.org/10.5012/bkcs.2010.31.01.075
  11. Pyridinolyses of 2,4-Dinitrophenyl Phenyl Carbonate and 2,4-Dinitrophenyl Benzoate: Effect of Nonleaving Group on Reactivity and Mechanism vol.31, pp.7, 2003, https://doi.org/10.5012/bkcs.2010.31.7.1915
  12. Concerted aminolysis of diaryl carbonates: Kinetic sensitivity on the basicity of the nucleophile, nonleaving group, and nucleofuge vol.44, pp.9, 2003, https://doi.org/10.1002/kin.20700