• Title/Summary/Keyword: Nonholonomic constraints

Search Result 54, Processing Time 0.024 seconds

A Homing and Obstacle Avoidance Algorithm for Nonholonomic Mobile Robots (Nonholonomic 이동로봇의 호밍과 장애물 회피 알고리즘)

  • Kong, Sung-Hak;Suh, Il-Hong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.12
    • /
    • pp.583-595
    • /
    • 2002
  • Homing operation can be defined as a series of actions which are necessary for a mobile robot to move from the current position with any arbitrary orientation to a desired position with a specified orientation, while avoiding possible obstacles. In this paper, a homing and obstacle avoidance algorithm for nonholonomic mobile robots is proposed. The proposed algorithm consists of a local goal generator, a discrete state controller, and local path tracking controller based on Aicardi's path following algorithm. In the discrete state controller, 4 states are defined according to the environmental conditions and 4 desired high-level command for the states are given as follows: avoid, wander, home and homing zones. The proposed local goal generator is designed to generate the desired local path by using weighted distance transforms which are newly made to satisfy the nonholonomic constraints of mobile robots. Here, subgoals are also found as vertices of the desired local path. To demonstrate result effectiveness and applicability of the proposed algorithm, computer simulations are illustrated and experimental results for a real mobile robot system are also provided.

Position estimation and path-tracking for wheeled mobile robots with nonholonomic constraints (Nonholonomic 제약을 가지는 구륜 이동 로보트의 위치추정과 경로추적)

  • 정대경;문종우;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.932-935
    • /
    • 1996
  • This paper proposes position estimation and path-tracking of a wheeled-mobile robot(WMR). Odometry and two distance measuring sensors are used to measure distance between guide wall and body and to locate its own position. And extended Kalman filter is introduced to fusion sensors and reduce noise. State feedback controller using the estimated position and path-tracking miles guidance control system. The computer simulation shows that proposed algorithm is well coincide with theoretical approach.

  • PDF

A New Formulation of Multichannel Blind Deconvolution: Its Properties and Modifications for Speech Separation

  • Nam, Seung-Hyon;Jee, In-Nho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.4E
    • /
    • pp.148-153
    • /
    • 2006
  • A new normalized MBD algorithm is presented for nonstationary convolutive mixtures and its properties/modifications are discussed in details. The proposed algorithm normalizes the signal spectrum in the frequency domain to provide faster stable convergence and improved separation without whitening effect. Modifications such as nonholonomic constraints and off-diagonal learning to the proposed algorithm are also discussed. Simulation results using a real-world recording confirm superior performanceof the proposed algorithm and its usefulness in real world applications.

Smooth Path Planning Method for Autonomous Mobile Robots Using Cardinal Spline (카디널스플라인을 이용한 자율이동로봇의 곡선경로 생성방법)

  • Yoon, Hee-Sang;Park, Tae-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.803-808
    • /
    • 2010
  • We propose a smooth path planning method for autonomous mobile robots. Due to nonholonomic constraints by obstacle avoidance, the smooth path planning is a complicated one. We generate smooth path that is considered orientation of robot under nonholonomic constraints. The proposed smooth planning method consists of two steps. Firstly, the initial path composed of straight lines is obtained from V-graph by Dijkstra's algorithm. Then the initial path is transformed by changing the curve. We apply the cardinal spline into the stage of curve generation. Simulation results show a performance of proposed smooth path planning method.

Tracking Control of Wheeled Mobile Robots Using Pseudo-Backstepping Method (유사 역보행 기법을 이용한 이동로봇의 추종제어)

  • Park, Jae-Yong;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.415-417
    • /
    • 2005
  • This paper proposes tracking control method using pseudo-backstepping control for wheeled mobile robots with nonholonomic constraints. First, the pseudo commands for forward linear velocity and angular velocity are chosen based on the kinematics. Then, the actual torque control inputs are designed to make the actual forward linear velocity and angular velocity follow the pseudo commands. Both semi-global practical posture(position and heading direction angle) stabilization and trajectory tracking are achieved for reference trajectories such as straight line and sinusoidal curve. The stability and performance analysed and numerical simulations are performed to confirm the effectiveness of the proposed scheme.

  • PDF

Turning Dynamics and Equilibrium of Two-Wheeled Vehicles

  • Chen Chih-Keng;Dao Thanh-Son;Yang Chih-Kai
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.377-387
    • /
    • 2005
  • The equations of motion of two-wheeled vehicles, e.g. bicycles or motorcycles, are developed by using Lagrange's equations for quasi-coordinates. The pure rolling constraints between the ground and the two wheels are considered in the dynamical equations of the system. For each wheel, two nonholonomic and two holonomic constraints are introduced in a set of differential-algebraic equations (DAE). The constraint Jacobian matrix is obtained by collecting all the constraint equations and converting them into the velocity form. Equilibrium, an algorithm for searching for equilibrium points of two-wheeled vehicles and the associated problems are discussed. Formulae for calculating the radii of curvatures of ground-wheel contact paths and the reference point are also given.

Dynamic Robust Path-Following Using A Temporary Path Generator for Mobile Robots with Nonholonomic Constraints

  • Lee, Seunghee;Jongguk Yim;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.515-515
    • /
    • 2000
  • The performance of dynamic path following of a wheeled mobile robot with nonholonomic constraints has some drawbacks such as the influence of the initial state. The drawbacks can be overcome by the temporary path generator and modified output. But with the previous input-output linearization method using them, it is difficult to tune the gains, and if there are some modeling errors, the low gain can make the system unstable. And if a high gain is used to overcome the model uncertainties, the control inputs are apt to be large so the system can be unstable. In this paper. an H$_{\infty}$ controller is designed to guarantee robustness to model parameter uncertainties and to consider the magnitude of control inputs. And the solution to Hamilton Jacobi (HJ) inequality, which is essential to H$_{\infty}$ control design, is obtained by nonlinear matrix inequality (NLMI).

  • PDF

Dynamic Control of a Robot with a Free Wheel (바퀴달린 로봇의 동적 제어)

  • 은희창;정동원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.127-132
    • /
    • 1998
  • Mobile wheeled robots are nonholonomically constrained systems. Generally, it is very difficult to describe the motion of mechanical systems with nonintegrable nonholonomic constraints. An objective of this study is to describe the motion of a robot with a free wheel. The motion of holonomically and/or nonholonomically constrained system can be simply determined by Generalized Inverse Method presented by Udwadia and Kalaba in 1992. Using the method, we describe the exact motion of the robot and determine the constraint force exerted on the robot for satisfying constraints imposed on it. The application illustrates the ease with which the Generalized Inverse Method can be utilized for the purpose of control of nonlinear system without depending on any linearization, maintaining precision tracking motion and explicit determination of control forces of nonholonomically constrained system.

  • PDF

Design and Implementation of Back-stepping Control for Path Tracking of Mobile Manipulator of Logistics and Manufacturing (물류이송 및 제조용 이동형 매니퓰레이터의 경로 추적을 위한 백스테핑 제어 설계와 구현)

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.301-306
    • /
    • 2021
  • In this paper, we propose a modified back-stepping control method in view of the dynamic model of mobile manipulator has the nonholonomic constraints, these constraints should be considered to design a tracking controller for the mobile manipulator. The conventional back-stepping controller includes the dynamics and kinematics of the mobile robot systems. and the modified adaptive back0stepping method is applied to constructing the controller. The proposed controller can realize the tracking trajectory of the reference path. The efficiency and robustness of this control method is demonstrated by the simulation.

A path planning of free flying object and its application to the control of gymnastic robot

  • Nam, Taek-Kun;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.526-534
    • /
    • 2003
  • Motions of animals and gymnasts in the air as well as free flying space robots without thruster are subject to nonholonomic constraints generated by the law of conservation of angular momentum. The interest in nonholonomic control problems is motivated by the fact that such systems can not stabilized to its equilibrium points by the smooth control input. The purpose of this paper is to derive analytical posture control laws for free flying objects in the air. We propose a control method using bang-bang control for trajectory planning of a 3 link mechanical system with initial angular momentum. We reduce the DOF (degrees of freedom) of control object in the first control phase and determine the control inputs to steer the reduced order system from its initial position to its desired position. Computer simulation for a motion planning of an athlete approximated by 3 link is presented to illustrate the effectiveness of the Proposed control scheme.