• Title/Summary/Keyword: Non-stationary Frequency Analysis

Search Result 107, Processing Time 0.024 seconds

Nondestructive Evaluation by Joint Time-Frequency Analysis of Degraded SUS 316 Steel (열화된 SUS 316강의 시간-주파수 해석에 의한 비파괴평가)

  • Lee, Kun-Chan;Oh, Jeong-Hwan;Nam, Ki-Woo;Lee, Joo-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.4
    • /
    • pp.270-276
    • /
    • 1999
  • Fourier transform has been one of the most commonly used tools in study of frequency characteristics of signal. However, based on the Fourier transform. it is hard to tell whether a signal's frequency contents evolve in time or not. Recently, to overcome Fourier transform fault. not to represent non-stationary signal, time-frequency analysis methods are developed and those can represent informations of signal's time and frequency at the same time. In this study we analysed ultrasonic signal for degraded SUS 316 with time-frequency analysis method. In particular the methods such as short time Fourier(STFT) and Wigner-Ville distribution(WVD) were used to extract frequency contents and characteristics from ultrasonic signals.

  • PDF

Development of Order Tracking Algorithm using Chirplet Transform (처플렛을 이용한 회전체 오더 분석 알고리듬 개발)

  • Sohn, Seok-Man;Lee, Jun-Shin;Lee, Sang-Kuk;Lee, Wook-Ryun;Lee, Sun-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.513-517
    • /
    • 2005
  • The condition monitoring of rotating machinery such as turbines, pumps and compressors, determine what repairs are needed to avoid shutdown and disassembly of the machine in an industrial plant Many diagnosis methods have been developed for use when the machine is running at steady state, the stationary condition. But much information can be gained about a rotor's condition during non-stationary conditions such as run-up and run-down. Order tracking analysis is a powerful tool for analyzing the condition of a rotating machine when its speed changes over time. Powerful OTA using digital signal processing has some advantages(cheap hardware, the powerful methods, the accurate post processing) and also some disadvantages(calculation time, high speed sampling). New OTA tool based on the chirplet transform is similar to the short time Fourier transform. But, it has good resolution at high speed like other OTA methods based STFT and more resolution for constant frequency components than re-sampling OTA.

  • PDF

Predicting the Design Rainfall for Target Years and Flood Safety Changes by City Type using Non-Stationary Frequency Analysis and Climate Change Scenario (기후변화시나리오와 비정상성 빈도분석을 이용한 도시유형별 목표연도 설계강우량 제시 및 치수안전도 변화 전망)

  • Jeung, Se-Jin;Kang, Dong-Ho;Kim, Byung-Sik
    • Journal of Environmental Science International
    • /
    • v.29 no.9
    • /
    • pp.871-883
    • /
    • 2020
  • Due to recent heavy rain events, there are increasing demands for adapting infrastructure design, including drainage facilities in urban basins. Therefore, a clear definition of urban rainfall must be provided; however, currently, such a definition is unavailable. In this study, urban rainfall is defined as a rainfall event that has the potential to cause water-related disasters such as floods and landslides in urban areas. Moreover, based on design rainfall, these disasters are defined as those that causes excess design flooding due to certain rainfall events. These heavy rain scenarios require that the design of various urban rainfall facilities consider design rainfall in the target years of their life cycle, for disaster prevention. The average frequency of heavy rain in each region, inland and coastal areas, was analyzed through a frequency analysis of the highest annual rainfall in the past year. The potential change in future rainfall intensity changes the service level of the infrastructure related to hand-to-hand construction; therefore, the target year and design rainfall considering the climate change premium were presented. Finally, the change in dimensional safety according to the RCP8.5 climate change scenario was predicted.

ECG Filtering using Empirical Mode Decomposition Method (EMD 방법을 이용한 ECG 신호 필터링)

  • Lee, Geum-Boon;Cho, Beom-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2671-2676
    • /
    • 2009
  • Empirical mode decomposition (EMD) is new time-frequency analysis method to decompose the signal adaptively and efficiently. The key idea of EMD is to decompose the signal into a set of functions defined by the signal itself, named Intrinsic Mode Functions (IMFs), which preserve the inherent properties of the original signal. Since the decomposition is based on the local time scale of the signal, it is not only applicable to nonlinear and non-stationary processes but also useful in biomedical signals like electrocardiogram (ECG). Traditional low-pass filter uses fourier transform to analysis signal in frequency domain, but EMD is filtered to maintain signal properties in time domain. This paper performed signal decomposition and filtering for noisy ECGs using EMD method. The proposed method is presented and compared with traditional low-pass filter by two performance indices. Our results show effectiveness for enhancement of the noisy ECG waveforms.

Frequency Characteristics of Acoustic Emission Signal from Fatigue Crack Propagation in 5083 Aluminum by Joint Time-Frequency Analysis Method (시간-주파수 해석법에 의한 5083 알루미늄의 피로균열 진전에 의할 음향방출 신호의 주파수특성)

  • NAM KI-WOO;LEE KUN-CHAN
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.3 s.52
    • /
    • pp.46-51
    • /
    • 2003
  • Acoustic emission (AE) signals, emanated during local failure of aluminum alloys, have been the subject of numerous investigations. It is well known that the characteristics of AE are strongly influenced by the previous thermal and mechanical treatment of the sample. Possible sources of AE during deformation have been suggested as the avalanche motion of dislocations, fracture of brittle particles, and debonding of these particles from the alloy matrix. The goal of the present study is to determine if AE occurring as the result of fatigue crack propagation could be evaluated by the joint time-frequency analysis method, short time Fourier transform (STFT), and Wigner-Ville distribution (WVD). The time-frequency analysis methods can be used to analyze non-stationary AE more effectively than conventional techniques. STFT is more effective than WVD in analyzing AE signals. Noise and frequency characteristics of crack openings and closures could be separated using STFT. The influence of various fatigue parameters on the frequency characteristics of AE signals was investigated.

Wavelet Transforms: Practical Applications in Power Systems

  • Akorede, Mudathir Funsho;Hizam, Hashim
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.168-174
    • /
    • 2009
  • An application of wavelet analysis to power system transient generated signals is presented in this paper. With the time-frequency localisation characteristics embedded in wavelets, the time and frequency information of a waveform can be presented as a visualised scheme. This feature is very important for non-stationary signals analysis such as the ones generated from power system disturbances. Unlike the Fourier transform, the wavelet transform approach is more efficient in monitoring fault signals as time varies. For time intervals where the function changes rapidly, this method can zoom in on the area of interest for better visualisation of signal characteristics.

Dynamic Characteristics of the Noise and Vibration of High-speed Train's Wheelset using Time-varying Frequency Analysis (시간-주파수 분석을 이용한 고속철도차량 윤축에서 발생하는 소음과 진동의 동적 특성)

  • Lee, Jun-Seok;Choi, Sung-Hoon;Kim, Sang-Soo;Park, Choon-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.465-471
    • /
    • 2009
  • In this paper, a relationship between the noise and vibration of a high-speed train's wheelset is examined by using time-varying frequency analysis with random data analysis which together contributes to a reduction in the number of experimental running. The noise and vibration of the wheelset is mainly caused by an interaction between the wheel and railway which shows in non-stationary characteristics. For the analysis, they are measured by some microphones and accelerometers, and those signals are post-processed by time-varying frequency analysis with random data analysis. From the analysis, their methods are useful for analyzing the noise and vibration of high-speed train's wheelset.

A Study on the Time-Frequency Analysis of Transient Signal using Wavelet Transformation (Wavelet 변환을 이용한 과도신호의 시간-주파수 해석에 관한 연구)

  • 이기영;박두환;정종원;김기현;이준탁
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.219-223
    • /
    • 2002
  • Voltage and current signals during impulse tests on transformer are treated as non-stationary signals. A new method incorporating signal-processing method such as Wavelets and courier transform is proposed for failure identification. It is now possible to distinguish failure during impulse tests. The method is experimentally validated on a transformer winding. The wavelet transforms enables the detection of the time of occurrence of switching or failure events. After establishing the time of occurrence, the original waveform is split into two or more sections. The wavelet transform has ability to analysis the failure signal on time domain as well as frequency domain. Therefore, the wavelet transform is superior than courier transform to analysis the failure signal. In this paper, the fact was proved by real data which was achieved.

  • PDF

IN-CYLINDER FLOW ANALYSIS USING WAVELET ANALYSIS

  • Park, D.;Sullivan, P.E.;Wallace, J.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.289-294
    • /
    • 2006
  • Better fundamental understanding of the interactions between the in-cylinder flows and combustion process is an important requirement for further improvement in the fuel economy and emissions of internal combustion(IC) engines. Flow near a spark plug at the time of ignition plays an important role for early flame kernel development(EFKD). Velocity data measurements in this study were made with a two-component laser Doppler velocimetry(LDV) near a spark plug in a single cylinder optical spark ignition(SI) engine with a heart-shaped combustion chamber. LDV velocity data were collected on an individual cycle basis under wide-open motored conditions with an engine speed of 1,000rpm. This study examines and compares the flow fields as interpreted through ensemble, cyclic and discrete wavelet transformation(DWT) analysis. The energy distributions in the non-stationary engine flows are also investigated over crank angle phase and frequency through continuous wavelet transformation(CWT) for a position near a spark plug. Wavelet analysis is appropriate for analyzing the flow fields in engines because it gives information about the transient events in a time and frequency plane. The results of CWT analysis are provided and compared with the mean flows of DWT first decomposition level for all cycles at a position. Low frequency high energy found with CWT corresponds well with the peak locations of the mean velocity. The high frequency flows caused by the intake jet gradually decay as the piston approaches the bottom dead center(BDC).

Target Velocity Estimation Technique Using CPA Analysis at the Moving Receiver (CPA분석을 이용한 기동하는 수신기에서의 표적 속도 추정기법)

  • Lee, Su-Hyoung;Kim, Jeong-Soo;Lee, Kyun-Kyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.336-342
    • /
    • 2009
  • A conventional Closest Point of Approach (CPA) analysis allows a non-maneuvering moving source that is radiating a constant frequency tone to be located using doppler shifted frequency measurements obtained by a stationary receiver. The original frequency, relative speed of the target, time at the CPA, and range from the CPA to the sensor are estimated by the conventional CPA. However, this paper proposes a new CPA analysis that allows the motion parameters of a target to be estimated using the bearing and frequency measurements obtained by a moving receiver that has a constant velocity. The validity of the proposed estimation scheme is confirmed through a performance analysis and simulation study.