• Title/Summary/Keyword: Non-minimum phase system

Search Result 66, Processing Time 0.023 seconds

Simulation Analysis of the Neural Network Based Missile Adaptive Control with Respect to the Model Uncertainty (신경회로망 기반 미사일 적응제어기의 모델 불확실 상황에 대한 시뮬레이션 연구)

  • Sung, Jae-Min;Kim, Byoung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.329-334
    • /
    • 2010
  • This paper presents the design of a neural network based adaptive control for missile. Acceleration of missile by tail fin control cannot be controllable by DMI (Dynamic Model Inversion) directly because it is non-minimum phase system. To avoid the non-minimum phase system, dynamic model inversion is applied with output-redefinition method. In order to evaluate performance of the suggested controllers we selected the three cases such as control surface fail, control surface loss and wing loss for model uncertainty. The corresponding aerodynamic databases to the failure cases were calculated by using the Missile DATACOM. Using a high fidelity 6DOF simulation program of the missile the performance was evaluates.

Adaptive Control Design for Missile using Neural Networks Augmentation of Existing Controller (기존제어기와 신경회로망의 혼합제어기법을 이용한 미사일 적응 제어기 설계)

  • Choi, Kwang-Chan;Sung, Jae-Min;Kim, Byoung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1218-1225
    • /
    • 2008
  • This paper presents the design of a neural network based adaptive control for missile is presented. The application model is Exocet MM40, which is derived from missile DATCOM database. Acceleration of missile by tail Fin control cannot be controllable by DMI (Dynamic Model Inversion) directly because it is non-minimum phase system. So, the inner loop consists of DMI and NN (Neural Network) and the outer loop consists of PI controller. In order to satisfy the performances only with PI controller, it is necessary to do some additional process such as gain tuning and scheduling. In this paper, all flight area would be covered by just one PI gains without tuning and scheduling by applying mixture control technique of conventional controller and NN to the outer loop. Also, the simulation model is designed by considering non-minimum phase system and compared the performances to distinguish the validity of control law with conventional PI controller.

End-Point Position Control of a Flexible Manipulator (유연한 조작기의 끝점 위치 제어)

  • 이재원;주해호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1307-1313
    • /
    • 1992
  • The end-point position control of a flexible manipulator is a non-minimum phase system. The PD feedback of the end-point position is not stable in contrast with that of the hub jangle. However, the system can be stabilized conditionally by the feedback of both the hub rate angle and the end-point position. Even in the non-minimum system, the LQG/LTR control law is more systmatic controller design method than the classical control law which uses a root-locus technique.

Direct Adaptive Pole-Placement and Stability of Discrete-time Non-minimum Phase Systems (이산시간 비 최소현상 시스템의 직지 적응 극배룰 및 안전팡에 관한 연구)

  • 최종호;최진영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.5
    • /
    • pp.193-199
    • /
    • 1984
  • This paper presents a direct adaptive pole placement control scheme which is applicable to discretetime non-minimum phase systems. It is proved that by this scheme the poles can be placed at the desired locations and the overall state vector of the system is uniformly bounded if the reference input is sufficiently rich, and also proved that in case of insufficiently rich reference input the overall system can still be stabilized though the poles may not be placed exactly at the desired locations. The effectiveness of this scheme is verified by digital computer simulations.

  • PDF

A Study on the Characteristics Improvement of Fluid Power Actuator Using Adaptive Control (적응제어를 이용한 유압 액츄에이터의 특성개선에 관한 연구)

  • 염만오;윤일로
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.124-132
    • /
    • 2004
  • A hydraulic system is difficult to keep the performance due to non-linearity, load pressure which changes according to working condition and system parameter variation, the requirement of control algorithm has been risen in order to satisfy them. An adaptive control is a control method which is suggested to achieve a control object though plant characteristics change. In spite of the case that plant characteristics and the degree of variation are difficult to grasp, adaptive control can keep the characteristics of closed-loop system regularly. In this study GMVAC(generalized minimum variance adaptive control) combined with output error feedback is proposed in order to solve problems of non-minimum phase, vibration and overshoot in initial response of the plant. The control performance according to the variation of characteristics of the plant is evaluated by changing the supply pressure only.

Design of robust controller for the longitudinal autopilot system of BTT missile using QFT (QFT를 이용한 BTT 미사일 종방향 오토파일럿 시스템의 강인제어기 설계)

  • 김석우;윤경한;김영철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.418-421
    • /
    • 1997
  • A design method of robust controller for the longitudinal autopilot of BTT missile is considered. The difficulties are a set of linearized dynamic models which corresponds to different operating points has a wide range of parameters and it has even Non-Minimum Phase(NMP) zeros. In this paper, such a family of models is expressed by an interval plant. Then a robust control design method using QFT is represented. A simulation result shows that the proposed controller satisfies the given specification well.

  • PDF

Design of an Active Adaptive Dual Controller for Non-Minimum Phase Systems (비최소 위상시스템에 대한 능동적응 이중 제어기의 설계)

  • 김도성;안태천;이명호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.9
    • /
    • pp.380-387
    • /
    • 1986
  • We have developed a dual control algorithm by means of innovations approach and established the stability of dual by introducing the pole-placement method suggested by Berger on the non-dual control. The dual controller realizing this algorithm decreases control loss sharply when compared with that of a non-dual controller, and shows the characteristics of suppressing the output deviation in transient state effectively. The total control energy and the accumulated square misdistance of this dual controller are shown to be 1-10% and 0.1-10% of those of CE control, respectively. Consequently this controller solves the non-minimum phase problem encountered when discretizing the system equation, and can be used to overcome the uncertainty of system effectively by adjusting the learning rate of the controller.

  • PDF

An experimental study on an inverse problem of a non-minimum phase system (비최소 위상 시스템의 역변환 문제에 대한 실험적 고찰)

  • Noh Kyoung Rae;Lee Sang Kwon
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.147-150
    • /
    • 2001
  • 본 논문은 비최소 위상을 가지는 시스템에 대한 역변환 문제를 실험적으로 고찰, 연구하였다. 일반적으로 선형적이고 인과적인 시스템의 입$cdot$ 출력관계는 행렬형태로 공식화할 수 있다. 최소위상(minimum phase) 시스템의 시스템행렬은 항상 역행렬이 존재하며 안정적이지만 비최소 위상(non-minimum phase)시스템의 시스템행렬은 근사특이(near-singular)행렬 또는 특이(singular) 행렬이므로 불량조건(ill-conditioning)이 발생하고 역변환이 존재할 수 없다. 비최소 위상 시스템의 역변환 문제는 다른 과정을 포함하지 않고서는 인과적이고 안정적인 역변환 필터를 가질 수 없다. 따라서 역변환 필터의 구현을 위해 SVD(singular value decomposition)를 이용하였다. 비최소 위상 시스템인 경우 시스템행렬은 하나이상의 매우 작은 특이 값을 가지며 이것은 시스템의 위상정보를 가진다. 이 성질을 이용하여 시스템의 근사적인 역변환 필터를 구현하고 비최소 위상을 갖는 외팔보에 대해 실험적으로 검증하였다.

  • PDF

Design of Disturbance Observer-Based Robust Controller for a Time-Delay System (시간 지연을 갖는 시스템에 대한 외란 관측기 기반 강인 제어기 설계)

  • Jeong, Goo-Jong;Son, Young-Ik;Jeong, Yu-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.213-214
    • /
    • 2008
  • This paper considers design of a robust controller that alleviates disturbance effects and compensates performance degradation of plants with time-delay. Disturbance observer(DOB) approach as a tool of robust control has been widely employed in industry. However, since the time-delay makes the plant non-minimum phase, classical DOB cannot be applied directly to the time-delay system. By using a new DOB structure for non-minimum phase systems together with the Smith Predictor, we propose a new control algorithm for reducing the effects of disturbance and time-delay of the system.

  • PDF

Analysis of the Esterification Process for Poly(ethylene terephthalate)

  • Ahn, Young-Cheol;Park, Soo-Myung
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.399-409
    • /
    • 2003
  • The first esterification reactor in the continuous polymerization of poly(ethylene terephthalate) has been analyzed by solving the material balances for the two-phase system with respect to the solubility of terephthalic acid. The Newton-Raphson method was used to solve the material balance equations instead of the Simplex method that is frequently used for finding a minimum point of a residual rather than a solution of an equation. A solution for the material balance equations, with the constraint of non-zero liquid phase fraction, could not be obtained with the solubility data of Yamada et al., but could be obtained with solubilities over a minimum value that is larger than their data. Thus, the solubility data of Yamada et al. are considered to be too small. On the other hand, the solubility data of Baranova and Kremer are so large that they gave a solution with the liquid phase only. Based on our results, several typical solubility curves satisfying the constraint of a non-zero liquid phase fraction are suggested in this study; we studied the reaction characteristics of the system using these curves. A higher temperature and a lower pressure are preferred for reducing the content of diethylene glycol.