• Title/Summary/Keyword: Non-matching interface

Search Result 20, Processing Time 0.022 seconds

Interface element method (IEM) for a partitioned system with non-matching interfaces (일치하지 않는 경계를 갖는 분리된 시스템을 위한 계면 요소법)

  • Kim, Hyun-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.324-329
    • /
    • 2001
  • A novel method for non-matching interfaces on the boundaries of the finite elements in partitioned domains is presented by introducing interface elements in this paper. The interface element method (IEM) satisfies the continuity conditions exactly through interfaces without recourse to the Lagrange multiplier technique. The moving least square (MLS) approximation in the present study is implemented to construct the shape functions of the interface elements. Alignment of the boundaries of sub-domains in the MLS approximation and integration domains provides a consistent numerical integration due to one form of rational functions in an integration domain. The compatibility of displacements on the boundaries of the finite elements and the interface elements is always preserved in this method, and the completeness of the shape functions of the interface elements guarantees the convergence of numerical solutions. The numerical examples show that the interface element method is a useful tool for the analysis of a partitioned system and for a global-local analysis.

  • PDF

Structural dynamics modification using non-matching substructure synthesis. (비부합 결합을 이용한 구조물 변경법)

  • 정의일;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.666-671
    • /
    • 2002
  • For a large structure, substructure based SDM(structural dynamics modification) method is very effective to raise its dynamic characteristics. Dividing into smaller substructures has a major advantage in the aspect of computation especially for getting sensitivities, which are in the core of SDM process. But quite often, non-matching nodes problem occurs in the process of synthesizing substructures. The reason is that, in general, each substructure is modelled separately, then later combined together to form a entire structure model under interface constraint conditions. Without solving the non-matching nodes problem, the substructure based SDM can not be processed. In this work, virtual node concept is introduced. Lagrange multipliers are used to enforce the interface compatibility constraint. The governing equation of whole structure is derived using hybrid variational principle. The eigenvalues of whole structure are calculated using determinant search method. The number of degrees of freedom of the eigenvalue problem can be drastically reduced to just the number of interface degree of freedom. Thus, the eigenvalue sensitivities can be easily calculated, and further SDM can be efficiently performed. Some numerical problems are tested to show the effectiveness of handling non-matching nodes.

  • PDF

On a Substructure Synthesis Having Non-Matching Nodes (비부합 절점으로 이루어진 구조물의 합성과 재해석)

  • 정의일;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.155-160
    • /
    • 2001
  • Actual engineering structure is frequently very complex, and parts of structure are designed independently by different engineers. Also each structure contains so many degree of freedom. For these reason, methods have been developed which permits the structure to be divided into components or substructures, with analysis being done on a small substructure in order to obtain a full structural system. In such case, because of different mesh size among finite element model (FEM) or different matching points among FEM models and experimentally obtained models, their interfacing points may be non-matching. Solving this non-matching problem is useful to other application such as structural dynamic modification or model updating. In this work, virtual node concept is introduced. Lagrange multipliers are used to enforce the interface compatibility constraint, and interface displacement is approximated by polynomial presentation. The governing equation of whole structure is derived using hybrid variational principle. The eigenvalue of whole structure are calculated using the determinant search method. The number of degree of freedom in the eigenvalue problem can be drastically reduced to just the number of interface degree of freedom. Some numerical simulation is performed to show usefulness of synthesis method.

  • PDF

Development of interface elements for the analysis of fluid-solid problems (유체-고체 상호작용 해석을 위한 계면요소의 개발)

  • Kim, Hyun-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.442-447
    • /
    • 2008
  • This paper presents a new approach to simulate fluid-solid interaction problems involving non-matching interfaces. The coupling between fluid and solid domains with dissimilar finite element meshes consisting of 4-node quadrilateral elements is achieved by using the interface element method (IEM). Conditions of compatibility between fluid and solid meshes are satisfied exactly by introducing the interface elements defined on interfacing regions. Importantly, a consistent transfer of loads through matching interface element meshes guarantees the present method to be an efficient approach of the solution strategy to fluid-solid interaction problems. An arbitrary Lagrangian-Eulerian (ALE) description is adopted for the fluid domain, while for the solid domain an updated Lagrangian formulation is considered to accommodate finite deformations of an elastic structure. The stabilized equal order velocity-pressure elements for incompressible flows are used in the motion of fluids. Fully coupled equations are solved simultaneously in a single computational domain. Numerical results are presented for fluid-solid interaction problems involving nonmatching interfaces to demonstrate the effectiveness of the methodology.

  • PDF

Optimal Structural Dynamics Modification Using Eigen Reanalysis Technique of Technique of Topological Modifications (위상 변경 고유치 재해석 기법을 이용한 최적 구조물 동특성 변경)

  • 이준호;박영진;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.77-81
    • /
    • 2003
  • SDM (Structural Dynamics Modification) is a tool to improve dynamic characteristics of a structure, more specifically of a base structure, by adding or deleting auxiliary (modifying) structures. In this paper, the goal of the optimal SDM is set to maximize the natural frequency of a base plate structure by attaching serially-connected beam stiffeners. The design variables are chosen as positions of the attaching beam stiffeners, where the number of stiffeners is considered as a design space. The problem of non-matching interface nodes between the base plate and beam stiffeners is solved by using localized Lagrange multipliers, which act to glue the two structures with non-matching interface nodes. As fer the cases of non-matching interface nodes problem, the governing equation of motion of a structure can be considered from the viewpoint of a topological modification, which involves the change of the number of structural members and DOFs. Consequently, the eigenpairs of the beam-stiffened plate structure are obtained by using an eigen reanalysis technique of topological modifications. Evolution Strategies (ES), which is a probabilistic population-based optimization technique that mimics the principles from biological evolution in nature, is utilized as a mean for the optimization.

  • PDF

A novel treatment of nonmatching finite element meshes via MLS approximation with stabilized nodal integration (이동 최소 제곱 근사와 안정화 절점 적분을 이용한 불일치 유한 요소망의 처리)

  • 조영삼;김현규;전석기;임세영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.591-598
    • /
    • 2002
  • The interface element method for non-matching FEM meshes is extended using stabilized nodal integration. Two non-matching meshes are shown to be joined together compatibly, with the aid of the moving least square approximation. Using stabilized nodal integration, the interface element method is able to satisfy the patch test, which guarantees the convergence of the method.

  • PDF

The study of data transfer method non-matching meshes interface using common-refinement method for fluid-structure interface (유체-구조 연성 해석을 위한 common-refinement 기반 불일치 격자 경계면에서의 정보 전달 기법 연구)

  • Han, Sangho;Kim, Donghyun;Lee, Changsoo;Kim, Chongam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.3
    • /
    • pp.191-198
    • /
    • 2014
  • During multi-physics or multi-phase simulations accompanying fluid- structure- thermal interaction, data transfer problems always arise along non- matching interfaces caused by different computational meshes for each physical domain. Common- refinement scheme, among many available methods, is attractive since it is known to yield conservative and accurate data transfer for non- matching interface cases. This is particularly important in simulating compressible unsteady fluid- structure- thermal interaction inside solid propellant rockets, where grid size along solid- fluid interfaces is substantially different. From this perspective, we examine performances of common- refinement- based data transfer scheme between structured quadrilateral (structure part) and unstructured triangular (fluid part) meshes by comparing computed results with other data transfer methods.

Coupling non-matching finite element discretizations in small-deformation inelasticity: Numerical integration of interface variables

  • Amaireh, Layla K.;Haikal, Ghadir
    • Coupled systems mechanics
    • /
    • v.8 no.1
    • /
    • pp.71-93
    • /
    • 2019
  • Finite element simulations of solid mechanics problems often involve the use of Non-Confirming Meshes (NCM) to increase accuracy in capturing nonlinear behavior, including damage and plasticity, in part of a solid domain without an undue increase in computational costs. In the presence of material nonlinearity and plasticity, higher-order variables are often needed to capture nonlinear behavior and material history on non-conforming interfaces. The most popular formulations for coupling non-conforming meshes are dual methods that involve the interpolation of a traction field on the interface. These methods are subject to the Ladyzhenskaya-Babuska-Brezzi (LBB) stability condition, and are therefore limited in their implementation with the higher-order elements needed to capture nonlinear material behavior. Alternatively, the enriched discontinuous Galerkin approach (EDGA) (Haikal and Hjelmstad 2010) is a primal method that provides higher order kinematic fields on the interface, and in which interface tractions are computed from local finite element estimates, therefore facilitating its implementation with nonlinear material models. The inclusion of higher-order interface variables, however, presents the issue of preserving material history at integration points when a increase in integration order is needed. In this study, the enriched discontinuous Galerkin approach (EDGA) is extended to the case of small-deformation plasticity. An interface-driven Gauss-Kronrod integration rule is proposed to enable adaptive enrichment on the interface while preserving history-dependent material data at existing integration points. The method is implemented using classical J2 plasticity theory as well as the pressure-dependent Drucker-Prager material model. We show that an efficient treatment of interface variables can improve algorithmic performance and provide a consistent approach for coupling non-conforming meshes in inelasticity.

Design and Implementation for Multi-User Interface Video Conference System (다자간 화상회의 시스템의 설계 및 구현)

  • Joo, Heon-Sik;Lee, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.1
    • /
    • pp.153-160
    • /
    • 2008
  • This paper shows the maximum data flow utilizing the Weight Bipartite Graph Matching system. The Weight Bipartite Graph Matching system sets the data transmission as edges and guides the maximum data flow on the set server and the client. The proposed Weight Bipartite Graph Matching system implements the multi-user interface video conference system. By sending max data to the server and having the client receive the max data, the non-continuance of the motion image frame, the bottleneck phenomenon, and the broken images are prevented due to the excellent capacity. The experiment shows a two-times better excellency than that of the previous flow control.

  • PDF

Implementation of Trump Card Detection and Identification using Template Matching (템플릿 매칭을 이용한 트럼프 카드 검출 및 인식 구현)

  • Lee, Yong-Hwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.112-115
    • /
    • 2020
  • Trump cards are used in variable games in households such as poker and blackjack. In many cases, it is able to be helpful to algorithmically identify the playing cards from camera views. In this paper, we provide an approach that detects and identifies the playing card using template matching scheme, and evaluate the results of the provided implementation. For ideal cases, the implemented system provides a 100% success rate for card identification correct. However, non-ideal case of perspective distortion is estimated with 70% success ratio. This work aims to evaluate the effectiveness of augmented reality user interface for an entertainment application like playing card games.