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Abstract

A novel method for non-matching interfaces on the boundaries of the finite elements in partitioned
domains is presented by introducing interface elements in this paper. The interface element method (IEM)
satisfies the continuity conditions exactly through interfaces without recourse to the Lagrange multiplier
technique. The moving least square (MLS) approximation in the present study is implemented to construct the
shape functions of the interface elements. Alignment of the boundaries of sub-domains in the MLS
approximation and integration domains provides a consistent numerical integration due to one form of rational
functions in an integration domain. The compatibility of displacements on the boundaries of the finite
elements and the interface elements is always preserved in this method, and the completeness of the shape
functions of the interface elements guarantees the convergence of numerical solutions. The numerical
examples show that the interface element method is a useful too} for the analysis of a partitioned system and

for a global-local analysis.

1. INTRODUCTION

The finite element methods have been
widely used to solve boundary value problems,
and a great deal of efforts has been
concentrated on making this method useful in
many engineering fields. Nevertheless, there
are drawbacks in dealing with a large structure
partitioned into several substructures, and with
a local region in a global system. Meshes in a
partitioned system may be constructed
independently by different works, and mesh
refinements may be imposed selectively on
some local regions. Non-matching meshes on
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the boundaries of partitioned domains prevent a
model from assembling domains into a global
system without any modification of meshes
along the interfaces. In particular, many steps
of successive refinements with compatible
connections are required to obtain a reasonable
resolution in a local region imbedded in a
global system.

A substantial amount of researches related
to the hybrid FEM [1, 2, 3] has been
endeavored by using Lagrange multipliers to
impose the continuity constraints on the
interfaces. An intermediate space between two
boundaries provides a reasonable decoupling of
non-matched interfaces, which is the mortar
finite elements [4, 5, 6] to glue partitioned
domains. However, these methods based on the
Lagrange multiplier technique satisfy the
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continuity conditions in a variational sense, and
require a complex formulation and additional
degrees of freedom.

We propose a novel method named the
interface element method (IEM) [7] to join
partitioned domains by taking moving least
square (MLS) approximations. The IEM
satisfies the continuity condition on the
interfaces and the compatibility condition on
the boundaries of finite elements and interface
elements. In the present method, additional
degrees of freedom in the hybrid finite element
methods are not required to enforce the
continuity condition between partitioned
domains, thereby introducing the interface
clements.

2. INTERFACE ELEMENT METHOD (IEM)

In this section, the interface element method
(IEM) is described in connection with some
properties of the interface elements. Figure la
shows partitioned domains (2, and (2,

discretized into finite elements by different

works, which produce a non-matching interface.

The IEM glues these partitioned domains by
introducing the interface elements defined on
the finite elements bordering on the non-
matching interfaces, as shown in Figure 1b.
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Figure 1. Interface element method for
partitioned domains with non-matching
interface: (a) partitioned domains (2, and
Q, ; (b) interface element domain Q7

defined on the finite elements bordering on the
non-matching interface.

2.1Definitions

Let a set €2, be the domain i obtained by
partitioning an open domain Q2 c . Then,
the interface 77 (i< j) is defined by

rf=02,N002,, i<j (1

We denote the interface set I'° to be the
union of all interfaces 77 . Layers of the finite

elements bordering on the interfaces /¢ in
domains (2, are the interface element

domains 2 as illustrated in Figure 2. The

interface  element domains Q% are
discretized into the interface elements A

QF=1]4 )

AeSE

where 27 is the closure of 2%, and 3}
is the triangulation established on the interface
element domains Q% , ie., the set 27 is
subdivided into a finite number of subsets
called the interface elements. Let 2 denote
the domains discretized into the finite elements
K.

!_2 - EFE U 511:‘ (3)
where

ﬁFE: UK

Ke3tE
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Figure 2. Interface elements A, and A, in

the interface element domain Q% between
the finite element domains 2% and *.

2.2 Construction of the interface elements
The shape functions of interface elements
are constructed by the moving least square
(MLS) approximations [8] which have been
developed for curve and surface fitting of
random data. In order to construct the shape
functions on the interface element domains
0% , we need to define sub-domains or
influence domains of nodes in the MLS
approximations. In this paper, we only consider
the procedure for constructing the shape
functions of interface elements in a model
partitioned into two domains $2, and £2,

with bilinear quadrilateral finite elements.
To define the sub-domains of nodes on the

interface 7;, we extend the finite elements
bordering on the interface I}; in the domain
£, to the finite elements bordering on the

[

interface I}; in the domain £2,. Conversely,
the finite elements in the domain £2, are
extended to the finite elements bordering on the
interface I, in the domain (2,. Figure 2
illustrates the extensions of the finite elements
in the interface element domains 2. Then
the pseudo nodes are defined at the
intersections between the extended lines and
the boundaries I/ of finite elements and
interface elements. The pseudo nodes are
denoted by open circles in Figure 3. The
interface elements are constructed by the real
and pseudo nodes in rectangular regions, as
shown in Figure 3.

FE
'QZ

Figure 3. Pseudo nodes I°, L, and L,
defined by extending the finite elements
bordering on the interface 77;.

The sub-domains of the nodes in the

interface element domains 2 are defined on
the basis of the finite elements bordering on the

interface I7;.

The choice of weight functions in the MLS
approximations is crucial in the form of the
shape functions of interface elements. In the
present study, the weight functions w(x) in

sub-domains are constructed by
wix)=1-3r(x) +2r(x)’ for xe Q* (4)

with
r(x)=1-s(x) and s(x)= ,,Z:‘Nk (x)w* (5

where k& indicates the real and pseudo nodes
in an interface element, and N*(x) are the
bilinear finite element shape functions defined
on an interface element. The nodal values
w*=w(x,) at the nodes k should be
defined on the real and pseudo nodes in the
interface elements. Since the weight functions
of nodes on the interfaces have zero values at
the boundaries of sub-domains, the values of

w' at the real and pseudo nodes on the

boundaries 77/ and I3/ are zero.

Another important requirement in the
construction of the shape functions of interface
elements is the compatibility condition on the
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boundaries 7/ of finite elements and
interface elements. It is easy to show that any
forms of weight functions defined on the
intervals between neighboring nodes in one-
dimension produces the finite element shape
functions in the MLS approximations with the
linear basis. Consequently, the interface
elements are compatible with the finite
elements on the boundaries 7™/ .

The shape functions of interface element can
be expressed as

v,,;A(x):Nﬁgzs"(x)oK for xe A (6)

where % are the values of local degrees of
freedom, ¢%(x) are the shape functions of
interface elements, and N, is the number of

local degrees of freedom associated with the
interface elements A .

The shape functions of interface elements
should include a basis which is related to the
completeness in terms of the ability to
represent rigid body motions and strain fields.
In the IEM, the shape functions of interface
elements reproduce a linear combination f (x)
of the basis exactly:

Zj‘,qé"(x)f(x") = f(x) for xeA )

3. NUMERICAL EXAMPLES

Several problems in two-dimensional linear
elasticity are solved to illustrate the
effectiveness of the present method. The
numerical results of the IEM as applied to
problems in two-dimensional elasto-statics,
specifically a cantilever beam and a plate with
a circular hole, are now discussed.

3.1 A cantilever beam

We consider a cantilever beam problem. We
use regularly distributed nodes for a model to
examine the present method. Three different
meshes =10, A=05 and A=0.25 are

used in the domain (2,. The Young modulus

and the Poisson’s ratio are E=1.0x10° and
v=0.25 , rtespectively. The plane stress
condition is imposed, and 5x5 integration
points are used in an interface element. The
traction P=1.0x10* is applied at the right-
end of the beam. Fig. 4 shows the distributions
of the stress o,, for these three cases. The

of the stress o, show a

reasonable connection through the non-
matching interfaces. The convergences for
displacement and energy in the domain (2,

distributions

are plotted in Fig. 5.

@)
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Figure 4. Distribution of the stress o, for a

cantilever beam problem: (a) k£=1.0, (b)
h=0.5,(c) h=025.
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Figure 5. Convergences on displacement and
energy norms in 2, of a cantilever beam

problem.

3.2 A plate with a hole

Next, we consider an infinite plate with a
circular hole of radius a . The plate is
subjected to a uniform tension, o, =1.0x10’
at infinity. The traction boundary conditions, as
given by the exact solutions, are imposed on
the outer boundary at r=5.0. The non-
matching interface is located at r=2.0 or
b =1.0. Due to symmetry, only a part,
0.0<7r<5.0, of the upper right quadrant of the
plate is modeled under the plane stress
condition. The Young modulus and the
Poisson’s ratio are E=1.0x10° and v =0.25,
respectively. We take Sx5 integration points
in an interface element. The mesh in the
domain (2, is refined in order to examine the
validity of the IEM. Fig. 6 shows the
distributions of the stress o,, for A=0.5,
#=025 and h=0.125 in the radial direction
in the domain 2,. The maximum stress o,
at the integration point in an element located on
the top of the hole with these three meshes in
the domain (2, is plotted in Fig. 7. In this
figure, the stress o,, approaches the exact
value (o, =30,) of the stress concentration by

taking local refinements,
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Figure 6. Distribution of the stress o, for a

plate with a hole problem: (a) A=0.5, (b)
h=0.25,(c) h=0.125.
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Figure 7. The stress maximum o, at the

integration points in the finite element on the
top of hole in the analysis of a plate with a hole.
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4.CONCLUSIONS

We presented the interface element method
(IEM) to join partitioned domains with non-
matching interfaces on the boundaries of the
bilinear quadrilateral finite elements in
partitioned domains. The MLS shape functions
of the interface elements satisfy the
completeness and the continuity conditions on
the interface element domains, which
reproduce any mth order polynomial exactly.
Moreover, the compatibility on the boundaries
of the finite elements and the interface elements
provides a reasonable connection of partitioned
domains. The alignment of the boundaries of
the sub-domains and integration domains
alleviates a difficuity in numerical integrations.
The IEM may be a very useful tool for
analyzing a partitioned system, and for a
global-local analysis.
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