• Title/Summary/Keyword: Non-linear dynamics

Search Result 259, Processing Time 0.031 seconds

Mathematical Model for Dynamic Performance Analysis of Multi-Wheel Vehicle (다수의 바퀴를 가진 차량의 동적 거동 해석의 수학적 모델)

  • Kim, Joon-Young
    • Journal of the Korea Convergence Society
    • /
    • v.3 no.4
    • /
    • pp.35-44
    • /
    • 2012
  • In this study, a simulation program is developed in order to investigate non steady-state cornering performance of 6WD/6WS special-purpose vehicles. 6WD vehicles are believed to have good performance on off-the-road maneuvering and to have fail-safe capabilities. But the cornering performances of 6WS vehicles are not well understood in the related literature. In this paper, 6WD/6WS vehicles are modeled as a 18 DOF system which includes non-linear vehicle dynamics, tire models, and kinematic effects. Then the vehicle model is constructed into a simulation program using the MATLAB/SIMULINK so that input/output and vehicle parameters can be changed easily with the modulated approach. Cornering performance of the 6WS vehicle is analyzed for brake steering and pivoting, respectively. Simulation results show that cornering performance depends on the middle-wheel steering as well as front/rear wheel steering. In addition, a new 6WS control law is proposed in order to minimize the sideslip angle. Lane change simulation results demonstrate the advantage of 6WS vehicles with the proposed control law.

FORECAST OF DAILY MAJOR FLARE PROBABILITY USING RELATIONSHIPS BETWEEN VECTOR MAGNETIC PROPERTIES AND FLARING RATES

  • Lim, Daye;Moon, Yong-Jae;Park, Jongyeob;Park, Eunsu;Lee, Kangjin;Lee, Jin-Yi;Jang, Soojeong
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.4
    • /
    • pp.133-144
    • /
    • 2019
  • We develop forecast models of daily probabilities of major flares (M- and X-class) based on empirical relationships between photospheric magnetic parameters and daily flaring rates from May 2010 to April 2018. In this study, we consider ten magnetic parameters characterizing size, distribution, and non-potentiality of vector magnetic fields from Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager (HMI) and Geostationary Operational Environmental Satellites (GOES) X-ray flare data. The magnetic parameters are classified into three types: the total unsigned parameters, the total signed parameters, and the mean parameters. We divide the data into two sets chronologically: 70% for training and 30% for testing. The empirical relationships between the parameters and flaring rates are used to predict flare occurrence probabilities for a given magnetic parameter value. Major results of this study are as follows. First, major flare occurrence rates are well correlated with ten parameters having correlation coefficients above 0.85. Second, logarithmic values of flaring rates are well approximated by linear equations. Third, using total unsigned and signed parameters achieved better performance for predicting flares than the mean parameters in terms of verification measures of probabilistic and converted binary forecasts. We conclude that the total quantity of non-potentiality of magnetic fields is crucial for flare forecasting among the magnetic parameters considered in this study. When this model is applied for operational use, it can be used using the data of 21:00 TAI with a slight underestimation of 2-6.3%.

Capture Simulation for Space Objects Using Biomimetic Space Nets (생체 모방 우주 그물을 이용한 우주 물체 포획 시뮬레이션)

  • Mi, Jang;Hyun-Cheol, Shin;Chang-Hoon, Sim;Jae-Sang, Park;Hae-Seong, Cho
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.24-34
    • /
    • 2022
  • This paper investigates the capture of a 12U-sized CubeSat space object using a spider-web structure-based space net. The structural dynamics analysis program ABAQUS is used to simulate the shock-absorbing capability of the space net with a diagonal length of 2.828 m. The space object is modelled as a rigid body, and the space net is modelled using non-linear elastic beam elements. The simulations reveal that the spider-web structure-based space net outperforms the squared space net of the same structural weight in capturing the space object. The numerical simulations are conducted to examine the successful or unsuccessful captures of the space object in various cooperative and non-cooperative motions.

Gas dynamics and star formation in NGC 6822

  • Park, Hye-Jin;Oh, Se-Heon;Wang, Jing;Zheng, Yun;Zhang, Hong-Xin;de Blok, W.J.G.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.70.2-71
    • /
    • 2021
  • We examine gas kinematics and star formation activities of NGC 6822, a gas-rich dwarf irregular galaxy in the Local Group at a distance of ~490 kpc. We perform profile decomposition of all the line-of-sight (LOS) HI velocity profiles of the high-resolution (42.4" × 12" spatial; 1.6 km/s spectral) HI data cube of the galaxy, taken with the Australian Telescope Compact Array (ATCA). To this end, we use a novel tool based on Bayesian Markov Chain Monte Carlo (MCMC) techniques, the so-called BAYGAUD, which allows us to decompose a velocity profile into an optimal number of Gaussian components in a quantitative manner. We group all the decomposed components into bulk-narrow, bulk-broad, and non-bulk gas components classified with respect to their velocity dispersions and the amounts of velocity offset from the global kinematics, respectively. Using the surface densities and velocity dispersions of the kinematically decomposed HI gas maps together with the rotation curve of NGC 6822, we derive Toomre-Q parameters for individual regions of the galaxy which quantify the level of local gravitational instability of the gaseous disk. We also measure the local star formation rate (SFR) of the corresponding regions in the galaxy by combining GALEX Far-ultraviolet (FUV) and WISE 22㎛ images. We then relate the gas and SFR surface densities in order to investigate the local Kennicutt-Schmidt (K-S) law of gravitationally unstable regions which are selected from the Toomre Q analysis. Of the three groups, the bulk-narrow, bulk-broad and non-bulk gas components, we find that the lower Toomre-Q values the bulk-narrow gas components have, the more consistent with the linear extension of the K-S law derived from molecular hydrogen (H2) observations.

  • PDF

Heart Rate Variability in Patients with Coronary Artery Disease (관상동맥질환 환자의 심박동변이도)

  • Kim Wuon-Shik;Bae Jang-Ho;Choi Hyoung-Min;Lee Sang-Tae
    • Science of Emotion and Sensibility
    • /
    • v.8 no.2
    • /
    • pp.95-101
    • /
    • 2005
  • This study is based on previous information regarding reduced cardiac vagal activity in patients with coronary artery disease(CAD), on reduced variance(SDNN : standard deviation of all normal RR intervals), low-frequency power(LF), and the complexity of heart rate variability(HRV) in patients with chronic heart failure(CHF), and on the normalized high-frequency power of HRV is the highest in the right lateral decubitus position among 3 recumbent postures in patients with CAD, However, nothing is known about the nonlinear dynamics of HRV for the 3 recumbent postures in patients with CAD. To investigate the linear and non-linear characteristics of HRV in patients with CAD, 29 patients as CAD group and 23 patients as control group were studied. Electrocardiogram(ECG) with lead II channel was measured on these patients for 3 recumbent postures in random order. The HRV from ECG was analyzed with linear method(for time and frequency domains) and nonlinear method. The lower the high-frequency power in normalized unit(nHF) in the supine or left lateral decubitous position, the higher the increase in nHF when the position was changed from supine or left lateral decubitous to right lateral decubitous. Among the 3 recumbent postures in patients with severe CAD, the right lateral decubitus position was observed to induce the highest vagal modulation, the lowest sympathetic modulation, and the highest complexity of human physiology system.

  • PDF

Experimental Study on Free Roll Decay Motions of a Damaged Ship for CFD Validation Database (CFD 검증용 데이터베이스 구축을 위한 손상 선박의 횡동요 감쇠 운동에 대한 실험적 연구)

  • Lee, Sung-Kyun;You, Ji-Myoung;Lee, Hyun-Ho;Rhee, Shin-Hyung;Rhee, Key-Pyo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.52-59
    • /
    • 2012
  • Among many factors to be considered for higher safety level requirements, the hull stability in intact and damaged conditions in seaways is of utmost importance. Since the assessment of a damaged ship is complicated due to the highly non-linear behavior, it is widely acknowledged that computational fluid dynamics (CFD) methods are one of the most feasible approaches. Although many research activities are being reported on the damaged ship stability recently, most of them are not designed for validation of CFD studies. In this study, well-designed model tests were performed to build a CFD validation database, which is essential in developing better CFD methods for the damage stability assessment. The geometry of the damaged compartment and test conditions were determined based on preliminary CFD simulations. Free roll decay tests in calm water with both intact and damaged ships were performed and the roll motion characteristics were compared. The damaged ship showed a larger roll damping coefficient and more rapid decrease of roll amplitude than the intact ship. The primary reason of these efforts can be explained by the movement of the flooded water.

A New Approach to Structure of Aerodynamic Fin Control System for STT Missiles

  • Song, Chan-Ho;Lee, Yong-In;Kim, Seung-Hwan;Kim, Pil-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.537-541
    • /
    • 2003
  • In order to control the missiles by aerodynamics, control surfaces sometime called fins are used. Deflection angles of these fins are the right control variables of the aerodynamics, but aerodynamicists prefer to use analytic variables called aileron, elevator and rudder instead of these physical variables, because these three analytic variables dominantly influence on the roll, pitch and yaw channels of the missile maneuver, respectively, and each can be assumed a linear combination of four fin deflection angles. On that basis, roll, pitch and yaw autopilots for controlling the attitudes or lateral acceleration of the missile are designed, and as a consequence outputs of each autopilot are aileron, elevator and rudder commands, respectively. In the existing fin control scheme for the typical tail-fin controlled cruciform missiles, firstly these outputs are distributed to four fin defection commands, and after that four fins are actuated by fin controllers so that their deflections follow the commands. This paper shows that performance of such control schemes can be degraded significantly when fin actuators have certain physical constraints such as slew rate, voltage or current limit, uncertainty of actuator dynamics, and so on, and propose a new control scheme which alleviates such problems. This scheme can be widely applied to various fin actuation systems. But in this paper, for convenience, tail-fin controlled cruciform missile is taken as an example, and it is shown that a proposed control scheme gives better performance than the existing one.

  • PDF

Recurrent Neural Network Models for Prediction of the inside Temperature and Humidity in Greenhouse

  • Jung, Dae-Hyun;Kim, Hak-Jin;Park, Soo Hyun;Kim, Joon Yong
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.135-135
    • /
    • 2017
  • Greenhouse have been developed to provide the plants with good environmental conditions for cultivation crop, two major factors of which are the inside air temperature and humidity. The inside temperature are influenced by the heating systems, ventilators and for systems among others, which in turn are geverned by some type of controller. Likewise, humidity environment is the result of complex mass exchanges between the inside air and the several elements of the greenhouse and the outside boundaries. Most of the existing models are based on the energy balance method and heat balance equation for modelling the heat and mass fluxes and generating dynamic elements. However, greenhouse are classified as complex system, and need to make a sophisticated modeling. Furthermore, there is a difficulty in using classical control methods for complex process system due to the process are non linear and multi-output(MIMO) systems. In order to predict the time evolution of conditions in certain greenhouse as a function, we present here to use of recurrent neural networks(RNN) which has been used to implement the direct dynamics of the inside temperature and inside humidity of greenhouse. For the training, we used algorithm of a backpropagation Through Time (BPTT). Because the environmental parameters are shared by all time steps in the network, the gradient at each output depends not only on the calculations of the current time step, but also the previous time steps. The training data was emulated to 13 input variables during March 1 to 7, and the model was tested with database file of March 8. The RMSE of results of the temperature modeling was $0.976^{\circ}C$, and the RMSE of humidity simulation was 4.11%, which will be given to prove the performance of RNN in prediction of the greenhouse environment.

  • PDF

Numerical analysis of 2-DOF motions of an ocean floater with sloshing effects (슬로싱 영향을 동반한 해양 부유체의 2자유도 거동 수치해석)

  • Kim, HyunJong;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.617-622
    • /
    • 2013
  • The sloshing of liquid inside an ocean floater is caused by disturbances due to waves. For the analysis of sloshing impact within the floater and that of waves on the floater, the coupled analysis method is used. The Stokes $5^{th}$ order non-linear wave theory equations were adapted for wave making. Furthermore, Navier-Stokes equation and Shear-Stress Transport (SST) turbulent model were used to Computational Fluid dynamics, where the ocean floater motions are considered the heave and the pitch motion. The results obtained confirms the mutual relationship between the rigid body motions and that of sloshing, where the sloshing behaviour within the floater is characterized by the wave effects on the floater.

Finite Element Analysis of Unbalance Response of a High Speed Flexible Polygon Mirror Scanner Motor Considering the Flexibility of Supporting Structure (지지구조의 유연성을 고려한 고속 유연 폴리곤 미러 스캐너 모터의 유한 요소 불평형 응답 해석)

  • Jung, Kyung-Moon;Seo, Chan-Hee;Kim, Myung-Gyu;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.859-865
    • /
    • 2007
  • This paper presents a method to analyze the unbalance response of a high speed polygon mirror scanner motor supported by sintered bearing and flexible supporting structures by using the finite element method and the mode superposition method. The appropriate finite element equations for polygon mirror are described by rotating annular sector element using Kirchhoff plate theory and von Karman non-linear strain, and its rigid body motion is also considered. The rotating components except for the polygon mirror are modeled by Timoshenko beam element including the gyroscopic effect. The flexible supporting structures are modeled by using a 4-node tetrahedron element and 4-node shell element with rotational degrees of freedom. Finite element equations of each component of the polygon mirror scanner motor and the flexible supporting structures are consistently derived by satisfying the geometric compatibility in the internal boundary between each component. The rigid link constraints are also imposed at the interface area between sleeve and sintered bearing to describe the physical motion at this interface. A global matrix equation obtained by assembling the finite element equations of each substructure is transformed to a state-space matrix-vector equation, and both damped natural frequencies and modal damping ratios are calculated by solving the associated eigenvalue problem by using the restarted Arnoldi iteration method. Unbalance responses in time and frequency domain are performed by superposing the eigenvalues and eigenvectors from the free vibration analysis. The validity of the proposed method is verified by comparing the simulated unbalance response with the experimental results. This research also shows that the flexibility of supporting structures plays an important role in determining the unbalance response of the polygon mirror scanner motor.

  • PDF