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Abstract: We develop forecast models of daily probabilities of major flares (M- and X-class) based
on empirical relationships between photospheric magnetic parameters and daily flaring rates from May
2010 to April 2018. In this study, we consider ten magnetic parameters characterizing size, distribution,
and non-potentiality of vector magnetic fields from Solar Dynamics Observatory (SDO)/Helioseismic and
Magnetic Imager (HMI) and Geostationary Operational Environmental Satellites (GOES) X-ray flare
data. The magnetic parameters are classified into three types: the total unsigned parameters, the total
signed parameters, and the mean parameters. We divide the data into two sets chronologically: 70% for
training and 30% for testing. The empirical relationships between the parameters and flaring rates are
used to predict flare occurrence probabilities for a given magnetic parameter value. Major results of this
study are as follows. First, major flare occurrence rates are well correlated with ten parameters having
correlation coefficients above 0.85. Second, logarithmic values of flaring rates are well approximated
by linear equations. Third, using total unsigned and signed parameters achieved better performance for
predicting flares than the mean parameters in terms of verification measures of probabilistic and converted
binary forecasts. We conclude that the total quantity of non-potentiality of magnetic fields is crucial for
flare forecasting among the magnetic parameters considered in this study. When this model is applied for
operational use, it can be used using the data of 21:00 TAI with a slight underestimation of 2–6.3%.

Key words: Sun: activity — Sun: flares — Sun: magnetic fields

1. INTRODUCTION

Solar flares rapidly release a tremendous amount of en-
ergy in the form of electromagnetic radiation, high en-
ergy particles and shock waves, which result in space
weather hazards. In space age, precautions against eco-
nomic risk by predicting solar flare occurrence are essen-
tial (Tsurutani et al. 2005; Schwenn 2006; Bocchialini
et al. 2018).

Most solar energetic events such as solar flares
explode out of active regions (ARs), which are areas
of complex and intense photospheric magnetic fields.
Thus, characteristics of solar ARs are considered to be
closely related to solar flares. Several different types of
AR information have been used for solar flare forecasts.
Many studies have considered morphological character-
istics of ARs such as size, shape and complexity us-
ing Mount Wilson magnetic classification and McIntosh
classification (Hale et al. 1919; McIntosh 1990; Born-
mann & Shaw 1994; Sammis et al. 2000; Gallagher et
al. 2002; McAteer et al. 2005; Qahwaji & Colak 2007;
Li et al. 2008; Colak & Qahwaji 2009; Bloomfield et
al. 2012; Lee et al. 2012; Li & Zhu 2013; Lee et al.
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2016; McCloskey et al. 2016; Shin et al. 2016). In addi-
tion, various magnetic parameters characterizing distri-
bution and non-potentiality of ARs from magnetograms
have been studied for flare forecasting (Leka & Barnes
2003a,b; Cui et al. 2006; Leka & Barnes 2007; Barnes
et al. 2007; Schrijver 2007; Yu et al. 2009; Yuan et al.
2010; Falconer et al. 2011; Ahmed et al. 2013; Huang
& Wang 2013; Falconer et al. 2014; Bobra & Couvi-
dat 2015; Barnes et al. 2016; Nishizuka et al. 2017;
Raboonik et al. 2017; Liu et al. 2017; Nishizuka et al.
2018; Huang et al. 2018; Leka et al. 2018; Park et al.
2018). Magnetic parameters have been also calculated
by magnetohydrodynamic (MHD) simulations and used
for predicting flares (Aulanier et al. 2013; Guennou et
al. 2017; Toriumi & Takasao 2017).

There have been many studies on flare probability
based on AR characteristics and flare probability fore-
casting models. Giovanelli (1939) examined probabili-
ties of an solar eruption in relation to sunspot group’s
size, type, and development. Gallagher et al. (2002) de-
veloped a flare prediction system using McIntosh classi-
fication, in which gives daily flare probabilities based on
Poisson statistics. Leka & Barnes (2003a) considered
magnetic parameters such as the vertical current, the
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current helicity, the twist parameter α, and the mag-
netic shear angles for discriminating flaring and flare-
quiet ARs, which had been examined in a series of pa-
pers (Leka & Barnes 2003b; Barnes & Leka 2006; Leka
& Barnes 2007). In order to parameterize these mag-
netic parameters, they first used vector magnetograms
from Imaging Vector Magnetograph (IVM) at the Uni-
versity of Hawai’i Mees Solar Observatory. As a forecast
result of their studies, Barnes et al. (2007) provided
flare probabilities using Bayes’s theorem. Falconer et
al. (2011) found an empirical relationship between flare
event rates and a proxy of magnetic free energy based
on line-of-sight magnetograms from Solar and Helio-
spheric Observatory (SOHO; Domingo 1995)/Michel-
son Doppler Imager (MDI; Scherrer et al. 1995). They
predicted flare probabilities from a power law relation-
ship between M- and X-class flare occurrence rates and
the free magnetic energy proxy. Bloomfield et al. (2012)
determined the Poisson flare probabilities from McIn-
tosh sunspot classes. Among a variety of forecast veri-
fication scores, they proposed true skill statistic (TSS)
as a standard score for comparing between flare fore-
casts. They also presented optimum thresholds to con-
vert probabilities into binary predictions and forecast
verification measures using these thresholds. Lee et al.
(2012) also reported flare occurrence Poisson probabil-
ities of McIntosh classification. They found that these
flare probabilities tend to increase with AR’s area and
flaring probabilities for increasing AR’s area are higher
than those for steadying and decreasing area.

Recently, Solar Dynamics Observatory (SDO; Pes-
nell et al. 2012) was launched in 2010 and Helioseismic
and Magnetic Imager (HMI), which is one of three in-
struments on the SDO, provides full-disk photospheric
vector magnetic fields with 12 minutes cadence (Scher-
rer et al. 2012; Schou et al. 2012; Hoeksema et al. 2014).

The HMI team developed a set of derivative
data called Space-weather HMI Active Region Patches
(SHARPs) data (Bobra et al. 2014). These data contain
automatically identified HMI Active Region Patches
(HARPs) and magnetic parameters which summarize
the size, distribution, and non-potentiality of vector
magnetic fields in each HARP, and these parameters
have been adapted from numerous studies (Leka &
Barnes 2003a; Schrijver 2007; Fisher et al. 2012). Ma-
chine learning algorithms have been applied to SHARP
data for binary flare forecasting (Bobra & Couvidat
2015; Nishizuka et al. 2017; Raboonik et al. 2017; Liu
et al. 2017; Nishizuka et al. 2018). The probabilistic
forecasting have been performed by Kontogiannis et al.
(2017) and Leka et al. (2018) using Bayesian prob-

abilities. Although there have been many categorical
forecasts using vector magnetic fields, probabilistic fore-
casts have been rarely considered. SHARP magnetic
parameters are also ranked by performance of discrim-
inating between flaring events and non-flaring events
based on machine learning algorithm (Bobra & Couvi-
dat 2015; Liu et al. 2017).

In this paper, we study empirical relationships be-
tween photospheric SHARP magnetic parameters and

daily major flaring rates. Furthermore, we will de-
velop forecast models of daily probability of major
flares (M- and X-class) based on these empirical rela-
tionships. We will also identify the rank of SHARP
magnetic parameters examining the performance of the
models developed from the parameters. In general,
the occurrence probability could present more continu-
ous information on potentiality of flare occurrence than
the binary (flaring/non-flaring) forecasts. Furthermore,
probability forecasts can be converted into binary fore-
casts using proper threshold values (Colak & Qahwaji
2009; Crown 2012; Bloomfield et al. 2012; Park et al.
2017; Murray et al. 2017; Leka et al. 2018).

The paper is organized as follows. Section 2 pro-
vides a detailed description of the data. The empirical
relationships using our model are explained in detail in
Section 3. Forecasting models and their results are pre-
sented in Section 4. We summarise and conclude with
a discussion in Section 5.

2. DATA AND ANALYSIS

2.1. Geostationary Operational Environmental
Satellites (GOES) X-ray flares

GOES have measured solar X-rays in the passbands of
1 - 8 Å and 0.5 - 4 Å. Solar X-ray flares are classified
according to the peak flux of X-rays with wavelength
bands 1 to 8 Å as measured by GOES. We use GOES
major (M- and X-class) X-ray flare data from May 2010
to April 2018 with their locations being identified by
the Lockheed Martin Solar and Astrophysics Labora-
tory (LMSAL).1 Our data include 448 M-class flares
and 27 X-class flares.

2.2. SDO/HMI and Magnetic Parameters
SHARP magnetic parameters have been used for flare
forecasting (Bobra & Couvidat 2015; Liu et al. 2017)
based on machine learning algorithm. Among the
SHARP parameters, we consider ten parameters which
have linear Pearson correlation coefficients (CCs) be-
tween these and flaring rates higher than 0.85 as de-
scribed in Section 3. The ten parameters are classified
into three types: the total unsigned parameters (TO-
TUSJH HCtotal

, TOTUSJZ Jz,total, TOTPOT ρtot, and
USFLUX Φ), the total signed parameters (SAVNCPP
Jz,sum and ABSNJZH HC,abs), and the mean parame-
ters (MEANPOT ρ, SHRGT45 Ashear, MEANSHR Γ,
and MEANGAM γ). The description and formula of
these parameters are listed in Table 1.

We use 00:00 TAI definitive HARPs in cylindrical
equal area (CEA) coordinates (hmi.sharp 720s cea data
series) when their longitudes are within ± 60 degrees of
the central meridian and corresponding ten magnetic
parameters from the Joint Science Operations Center
(JSOC).2 According to Hoeksema et al. (2014), the
number of high-confidence pixels in SHARP data de-
creases significantly beyond ± 60 degrees of the central

1https://www.lmsal.com/solarsoft/latest_events_archive.
html

2http://jsoc.stanford.edu/

https://www.lmsal.com/solarsoft/latest_events_archive.html
https://www.lmsal.com/solarsoft/latest_events_archive.html
http://jsoc.stanford.edu/
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Table 1
Descriptions and formulas of ten SHARP magnetic parameters. Constants have been omitted.

Keyword Description Formula

TOTUSJH Total unsigned current helicity HCtotal =
∑
|Bz · Jz|

TOTUSJZ Total unsigned vertical current Jz,total =
∑
|Jz| dA

TOTPOT Total photospheric magnetic free energy density ρtot =
∑

(Bobs-Bpot)
2 dA

USFLUX Total unsigned magnetic flux Φ =
∑
|Bz| dA

SAVNCPP Sum of the net current emanating from each polarity Jz,sum = |
∑B+

z JzdA|+|
∑B−

z JzdA|
ABSNJZH Absolute value of the net current helicity HC,abs = |

∑
Bz·Jz|

MEANPOT Mean photospheric magnetic free energy density ρ = 1
N

∑
(Bobs −Bpot)

2

SHRGT45 Fractional area with shear > 45◦ Ashear = Area with shear > 45◦/ HARP area

MEANSHR Mean shear angle Γ = 1
N

∑
arccos (

Bobs·Bpot

|Bobs||Bpot| )

MEANGAM Mean angle of field from radial γ = 1
N

∑
arctan (Bh

Bz
)

meridian. In this study, a HARP is regarded as an unit
of area to occur flares.

3. EMPIRICAL RELATIONSHIPS BETWEEN
MAGNETIC PARAMETERS AND SOLAR MAJOR

FLARE OCCURRENCE RATES

To develop a solar flare occurrence probability forecast-
ing model, we need relationships between ten magnetic
parameters and major flare occurrence rates. For iden-
tifying these relationships, we need a data set of major
flare occurrence history and corresponding ten param-
eter values for each HARP.

3.1. Flare Identification
We identify each HARP at 00:00 TAI that produced
one or more major flares within a day by using the flare
locations corrected for differential rotation rates. When
a flare event is located in a HARP’s box, the flare event
is considered to occur from that HARP. We assume that
all flare events are independent of one another.

3.2. Data Set
Our data sets are divided into two (training and test)
in chronological order. 70% of the data, HARPs from 1
May 2010 to 20 April 2015 including the ascending and
maximum phase of the solar cycle (SC) 24, are used for
finding a relationship between parameters and flaring
rates. And 30% of the data, HARPs from 21 April 2015
to 30 April 2018 including the part of the descending
phase of SC 24, are used for testing it. Accordingly,
the training data consist of 11040 samples (different
1889 HARPs) and the test data consist of 4724 sam-
ples (different 898 HARPs). The training data sample
consist of 224 event samples and 10816 non-event sam-
ples. The test data sample consist of 38 event samples
and 4686 non-event samples. The sample ratio is as
unbalanced as previous major flare forecasting models,
because major flares are rare events and the solar cycle
24 is unprecedentedly quiet.

3.3. Major Flare Occurrence Rates as a Function of
Magnetic Parameters

We want to identify relationships between ten magnetic
parameters and major flare occurrence rates. For each

parameter, we divide our data into 50 subgroups with
equal number of HARPs. Then, we determine the av-
erage parameter value and the number of major flares
within a day from each daily HARP in each subgroup.
The mean major flare occurrence rate (Ri) of i-th group
(Gi) is given by

Ri =
# of major flares of Gi

# of HARPs of Gi
. (1)

In order to find relationships, these rates are plotted
as a function of each parameter in log-log scales. As
Falconer et al. (2011) presented a power law function of
major flare occurrence rates and their parameter from
line-of-sight magnetic fields, our models also considers
the power law function of each parameter as shown in
Figure 1. The occurrence rates range from 0.001 to
about 1 for all parameters. The flaring rates are only
considered above 0.01 for obtaining more accurate fit-
ting functions as Falconer et al. (2011) did. The fitting
function is

log(R) = a log(x) + b, (2)

where R is a mean flare occurrence rate, x is a mean
parameter value of a group, a is a power law slope, and
b is a fitting constant. To examine the dependence of
the binning size, we also consider three cases of bin-
ning size = 10, 20, 100. Power law functions are well
fitted with data for all four cases and their differences
are very small. Thus, we use the power law function
with binning size = 50 and its fitting coefficients and
uncertainties of ten SHARP parameters are shown in
Table 2.

In Table 2, the CCs between flaring rates and ten
SHARP parameters are high (above 0.85), implying
that they are well correlated with each other. Among
the ten parameters, the total unsigned vertical current
has the minimum root mean square error (RMSE) be-
tween the power law fitting function and its original
value (Figure 1a and 1b).
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Figure 1. Major flare occurrence rates versus ten magnetic parameters in log-log scale. The occurrence rate of each group
is indicated by diamond symbols. Vertical error bars represent the uncertainty of the occurrence rate of each group (σ =√
R(1−R)/N). Horizontal error bars represent the root mean square error (RMSE) between parameter values of each

group and its mean value. Red lines correspond to power law fits. Data with flare rates above 0.01 (blue dashed line) are
used in the fitting procedure.

4. FORECAST MODELS AND THEIR VERIFICATION

4.1. Forecast Models Based on Empirical Relationships
between Parameters and Flaring Rates

We develop forecasting models of daily probability of
major flares using the relationships between ten mag-
netic parameters and daily flaring rates. For a given x,
we can predict a major flare occurrence rate from the

empirical fitting functions. From these predicted rates,
we calculate flare probabilities using the Poisson distri-
bution (Wheatland 2000; Moon et al. 2001; Gallagher
et al. 2002; Bloomfield et al. 2012; Lee et al. 2012). The
probability (P ) of occurring at least one flare in a day
is given by

P = 1 − exp(−R). (3)
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Table 2
Correlations between flare occurrence rates and magnetic

parameters

Parameter CC a b RMSE

HC,total 0.91 1.61± 0.003 −6.34± 0.012 0.25
Jz,total 0.95 1.56± 0.003 −22.21± 0.045 0.17
ρtot 0.87 1.11± 0.002 −27.25± 0.058 0.27
Φ 0.86 1.34± 0.004 −30.95± 0.08 0.27

Jz,sum 0.90 1.16± 0.002 −16.0± 0.029 0.24
HC,abs 0.86 0.98± 0.002 −3.31± 0.004 0.32
ρ 0.90 1.81± 0.006 −8.1± 0.023 0.22

Ashear 0.88 1.85± 0.006 −3.87± 0.009 0.24
Γ 0.86 4.64± 0.017 −8.46± 0.026 0.24
γ 0.86 4.78± 0.013 −9.14± 0.021 0.27

Correlation coefficients (CCs) between major flare occurrence
rates and ten magnetic parameters, their fitting coefficients, and
root mean square errors (RMSEs) between flaring rates and fit-
ting lines.

4.2. Verification Measures
4.2.1. Verification Measures of Probability

Forecast models represent verification measures which
are a single number measuring forecast performance.
We consider the mean squared error (MSE), the Brier
skill score (BSS), and the reliability plots. These mea-
sures have been used for verifying the performance of
probabilistic forecast models (Wheatland 2005; Barnes
et al. 2007, 2016). The MSE, which is a measure of
accuracy, is given by

MSE =
1

N

N∑
i=1

(Pi −Oi)
2, (4)

where Pi is the predicted probability and Oi is the ob-
servation that events occurred (Oi = 1) or did not occur
(Oi = 0). When perfect forecast occurs, the MSE is 0.
The BSS, which represents the relative skill compared
to the model using the climatological event rate during
the testing interval, is given by

BSS =
1
N

∑N
i=1(Pi −Oi)

2 − 1
N

∑N
i=1(Oi −Oi)

2

0 − 1
N

∑N
i=1(Oi −Oi)2

. (5)

When perfect forecast occurs, BSS is 1, and ”no-skill”
as compared to the climatological forecast results in
0. The reliability plots are observed occurrence rates
against predicted occurrence rates. When perfect fore-
cast occurs, all points in the reliability plot lie on the
diagonal line.

From the test samples, we calculate the MSE and
BSS of ten forecast models, which are listed in Table 3.
The total unsigned current helicity has the best perfor-
mance in terms of both MSE and BSS. In view of the
BSS, the total unsigned parameters have higher value
than the signed and mean parameters; more specifically,
HC,total > HC,abs, Jz,total > Jz,sum, and ρtot > ρ.

Figure 2 show reliability plots and their RMSEs
(i.e., standard deviation of the residuals from the y = x

Table 3
Verification measures of probabilistic forecasts

Parameter MSE (Perfect = 0) BSS (Perfect = 1)

HC,total 0.006± 0.0001 0.22± 0.005
Jz,total 0.007± 0.0001 0.17± 0.004
ρtot 0.007± 0.0001 0.12± 0.007
Φ 0.007± 0.0001 0.12± 0.004

Jz,sum 0.007± 0.0001 0.14± 0.007
HC,abs 0.007± 0.0001 0.15± 0.007
ρ 0.010± 0.0001 −0.26± 0.014

Ashear 0.009± 0.0001 −0.15± 0.009
Γ 0.009± 0.0001 −0.18± 0.010
γ 0.009± 0.0001 −0.14± 0.007

MSE: mean squared error; BSS: Brier skill score.

line) between observed rates and predicted ones. Most
of the data points for the total unsigned and signed
parameters are relatively adjacent to the diagonal line
compared to the mean parameters. The total signed pa-
rameters can predict a wider range of probabilities than
the other types of parameters. The Φ gives the best re-
liability (RMSE = 0.03), but the reliability plots and
their RMSEs can depend on the selection of probability
bins.

As an example, we present the probabilities of
HARP 7115 (NOAA 12673) predicted by our models
with top six BSS at the cadence of 1 hour from 2017
September 2 to 6 in Figure 3. Our forecast models
present their own probabilities of major flare occurrence
within a day after the observation time. Our predicted
probabilities from six models are compared with GOES-
15 X-ray fluxes (5 minute data). During this period,
several major flares occurred in HARP 7115 (NOAA
12673). On September 2, probabilities that major flares
occur are mostly lower than 20%. Actually, there is no
major flare during that period. The models of the to-
tal signed parameters (HC,abs and Jz,sum) show a rapid
and significant increase of forecast probabilities around
September 4 when the first major flare occurred as well
as persistence of high probabilities (greater than 50%)
over the next three days. On the other hand, the mod-
els of the total unsigned parameters show relatively low
probabilities (mostly less than 50%) with a gradually
increasing trend. This suggests that the total signed
parameters may help the empirical models in this study
to better perform in some cases such as HARP 7115.

Our forecast models are to predict daily flare prob-
ability at 00:00 TAI using SDO/HMI observations.
However, the models may have an issue on operational
forecasting since there is a delay of getting magnetic
parameters after the observations. At present, the data
that we can get the fastest are available in less than
three hours after the observation time. The calcula-
tion of the probability from our models needs only a
few minutes. Thus, the delay time from observations
to forecasts will not exceed 3 hours. For operational
forecasting, we can predict daily flaring probability at
00:00 TAI using the observation at 21:00 TAI of the
previous day. In order to examine how much this oper-
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Figure 2. Observed flaring rates versus the predicted rates for major flares in log-log scale. The uncertainties of observed
rates for each group are represented by error bars. Perfect reliability occurs when all points lie on the x = y line. Root
mean squre errors (RMSE) between predicted rates and observed ones are as follows: (a) 0.07, (b) 0.07, (c) 0.06, (d) 0.03,
(e) 0.12, (f) 0.13, (g) 0.18, (h) 0.18, (i) 0.19, and (j) 0.29.
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Figure 3. Predicted major flare occurrence probabilities of HARP 7115 (NOAA 12673) using the model of (a) HC,total, (b)
Jz,total, (c) HC,abs, (d) Jz,sum, (e) ρtot , and (f) Φ from 2017 September 2 to 6 and GOES-15 X-ray flux (5 minute data) in
the passbands of 1 - 8 Å (red). These are updated once per hour. The dashed line indicates the M-class threshold.

ational model is different from the original model, we in-
vestigate the relationship between Jz,total at 21:00 TAI,
which has the highest CC between parameter values and
flaring rates in Table 2, and the flaring rate for a day
(00:00–23:59 TAI). In this case, the fitting coefficients,
a and b, are 1.53 and −21.83, respectively, which is dif-
ferent by about 2% from the fitting coefficients of the
original model with Jz,total in Table 2. The predicted
probabilities from the operational model are underesti-
mated by 2–6.3% compared to those from the original
model. If we provide the operational forecasting with
this model, the forecast has to have this uncertainty
together with its original uncertainties.

4.2.2. Verification Measures of Binary

The probabilistic forecast results have been converted
into contingency tables by using probability thresholds

(Colak & Qahwaji 2009; Crown 2012; Bloomfield et al.
2012). A contingency table consists of four components:
the number of TP (flare event predicted and occurred),
FN (no flare event predicted and flare occurred), FP
(flare event predicted and did not occur), and TN (no
flare event predicted and did not occur) as shown in
Table 4. Verification measures for binary forecasts are
obtained by combining these four components of the
contingency table. We build contingency tables using
probability thresholds and calculate six measures.

In this study, we consider the following verification
measures: the proportion correct (PC), the probability
of detection (POD), the false alarm ratio (FAR), the
Heidke skill score (HSS), the true skill statistic (TSS),
and the symmetric extremal dependence index (SEDI).
The first five measures have been widely used for the
evaluation of flare forecasts, and the last one has been
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Table 4
Contingency table

Forecast
Observation Flare No flare

Yes TP FN
No FP TN

rarely used but is meaningful for validating forecasts of
rare events such as major flares (Ferro & Stephenson
2011; Kubo et al. 2017). These six performance mea-
sures are described in Table 5.

We determine the values of six measures and their
thresholds to achieve optimum TSS and HSS in contin-
gency tables, which are summarized with their uncer-
tainties in Table 6 and 7, respectively. In view of the
optimized TSS, the total unsigned parameters (HC,total,
ρtot, Jz,total, and Φ) achieved higher values of verifica-
tion measures than the total signed (HC,abs and Jz,sum)
and mean parameters (ρ, Ashear, Γ, and γ). HC,total is
one of the parameters having the highest TSS, which is
consistent with the highest F -score in the classification
between flaring events and non-flaring events (Bobra &
Couvidat 2015). The rank order of TSS in view of the
optimized TSS is also consistent with that of F -score
from Bobra & Couvidat (2015). When the probability
threshold is small, TSS values are very high but FAR
values are also high. In view of the optimized HSS, most
of total unsigned parameters also have higher value than
the signed and mean parameters (HC,total > HC,abs,
Jz,total ≈ Jz,sum, and ρtot > ρ). Bloomfield et al. (2012)
suggested that TSS is optimized when FN/FP is simi-
lar to the ratio of flare event number to non-flare event
number, and the HSS is optimized when FN/FP ≈ 1.
The thresholds of the optimum TSS and HSS proposed
by Bloomfield et al. (2012) are slightly different (from
0 to 0.03) from the thresholds of the optimum TSS and
HSS in our models.

Another interesting measure is a relative operating
characteristic (ROC) curve, in which POD is plotted
as a function of POFD, and an ROC area, which is
area under the ROC curve. When perfect forecast oc-
curs, the curve travels from bottom left to top left of
diagram, then across to top right of diagram. In this
case, the ROC area is 1. ROC areas under the curve of
ten parameters with their uncertainties are as follows:
0.98 ± 0.001 from HC,total, 0.98 ± 0.001 from Jz,total,
0.97±0.001 from ρtot, 0.97±0.001 from Φ, 0.95±0.002
from Jz,sum, 0.96±0.001 from HC,abs, 0.93±0.001 from
ρ, 0.91 ± 0.002 from Ashear, 0.9 ± 0.002 from Γ, and
0.88 ± 0.002 from γ. As shown in Figure 4, the to-
tal unsigned parameters have higher ROC areas than
the total signed parameters and the mean parameters,
which gives the better performance in terms of the ROC
curve measure. The difference in ROC areas is very
small between all of the total unsigned parameters.

Table 5
Verification Measures

Measure Equation Perfect

PC TP+TN
TP+FN+FP+TN

1

POD TP
TP+FN

1

FAR FP
TP+FP

0
TSS POD - POFD 1

HSS 2[(TP×TN)−(FN×FP)]
(TP+FN)(FN+TN)+(TP+FP)(FP+TN)

1

SEDI (log(POFD)−log(POD)−log(1−POFD)+log(1−POD)
(log(POFD)+log(POD)+log(1−POFD)+log(1−POD)

1

Proportion correct (PC) measures what fraction of the forecasts
were correct. The fraction of flare events observed that were
correctly forecast is given by the probability of detection (POD)
or hit rate. POD should be used in conjunction with a false
alarm ratio (FAR), which quantifies what fraction of the predicted
flare events was actually not observed. The probability of false
detection (POFD) is the fraction of observations for which flares
were incorrectly forecast to occur. A true skill statistic (TSS)
describes how well the forecast discriminated flare events from
non-flare events. The Heidke skill score (HSS) gives the accuracy
of the forecast relative to that of random chance. Recently, the
symmetric extremal dependence index (SEDI) has been proposed
by (Ferro & Stephenson 2011); this skill score is for forecasting
rare events.

4.2.3. Uncertainties of Verification Measures

Several forecast studies have mentioned the necessity of
uncertainties for forecast verification measures (Barnes
et al. 2016; Kubo et al. 2017; Leka et al. 2018) because
the verification measures are calculated from finite num-
ber of samples. To estimate uncertainties of verification
measures, we use a bootstrap method, which accounts
for random errors using resampling. We consider the
size of resampled data which is the difference between
the number of non-events and events. We make a re-
sampled data with size = 4648 by picking randomly.
Then, we calculate the verification measures from the
resampled data. This process iterates 1000 times and
the uncertainties are estimated by the standard devia-
tion of the resampled values of verification measures in
Table 6 and 7.

5. SUMMARY AND DISCUSSION

We have presented the forecasting models of major flare
probability based on the power law relationships be-
tween ten magnetic parameters and major flare occur-
rence rates. The magnetic parameters calculated from
SDO/HMI vector magnetic fields are used. The data
are taken from May 2010 to April 2018 and divided into
two sets (training of 11,040 HARPs and test of 4,724
HARPs) in chronological order, which is proper for fore-
cast purpose. All values of the magnetic parameters
are divided into 50 subgroups to estimate correspond-
ing flare occurrence rates. From this, we considered the
power law relationships between magnetic parameters
and flaring rates.

The major results of this study are summarized
as follows. First, major flare occurrence rates are well
correlated with ten magnetic parameters (CC ≥ 0.86).
Second, the logarithmic values of flaring rates are well
approximated by linear equations. Third, the total
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Figure 4. Receiver operating characteristic (ROC) curve in which probability of detection (POD) is plotted as a function of
probability of false detection (POFD). When perfect forecast occurs, the curve travels from bottom left to top left of the
diagram, then continues to the top right of the diagram.
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Table 6
Verification measure values and probability thresholds chosen to achieve the optimum true skill statistic (TSS) from ten

SHARP magnetic parameters

Parameter Threshold PC POD FAR TSS HSS SEDI

HC,total 0.04 0.93± 0.002 0.97± 0.003 0.89± 0.004 0.91± 0.004 0.18± 0.006 0.97± 0.0007
ρtot 0.055 0.93± 0.0008 0.97± 0.003 0.9± 0.002 0.91± 0.003 0.18± 0.003 0.97± 0.0004
Jz,total 0.045 0.93± 0.001 0.97± 0.003 0.9± 0.002 0.91± 0.003 0.18± 0.004 0.96± 0.0005

Φ 0.035 0.9± 0.006 0.97± 0.005 0.93± 0.006 0.88± 0.005 0.13± 0.01 0.96± 0.001
HC,abs 0.07 0.93± 0.001 0.87± 0.007 0.91± 0.003 0.8± 0.007 0.16± 0.004 0.91± 0.004
Jz,sum 0.03 0.84± 0.001 0.95± 0.004 0.95± 0.001 0.79± 0.005 0.07± 0.002 0.91± 0.003
ρ 0.03 0.8± 0.0007 0.97± 0.003 0.96± 0.0008 0.78± 0.003 0.06± 0.001 0.91± 0.0007

Ashear 0.015 0.74± 0.006 0.95± 0.006 0.97± 0.0006 0.68± 0.003 0.04± 0.001 0.84± 0.003
Γ 0.015 0.7± 0.037 0.95± 0.035 0.98± 0.004 0.65± 0.007 0.03± 0.008 0.82± 0.007
γ 0.025 0.77± 0.003 0.84± 0.008 0.97± 0.0009 0.61± 0.008 0.04± 0.001 0.77± 0.007

Table 7
Verification measure values and probability thresholds chosen to achieve the optimum Heidke skill score (HSS) from ten

SHARP magnetic parameters

Parameter Threshold PC POD FAR TSS HSS SEDI

HC,total 0.195 0.99± 0.0001 0.45± 0.01 0.55± 0.01 0.44± 0.01 0.44± 0.009 0.76± 0.007
HC,abs 0.21 0.99± 0.0008 0.45± 0.03 0.59± 0.03 0.44± 0.03 0.43± 0.009 0.76± 0.02
Jz,total 0.15 0.99± 0.0004 0.61± 0.02 0.68± 0.007 0.59± 0.02 0.41± 0.008 0.83± 0.009
Jz,sum 0.22 0.99± 0.0003 0.45± 0.02 0.61± 0.03 0.44± 0.02 0.41± 0.009 0.75± 0.008
ρtot 0.205 0.98± 0.001 0.58± 0.05 0.75± 0.03 0.57± 0.05 0.34± 0.007 0.8± 0.02
Φ 0.135 0.98± 0.001 0.55± 0.04 0.77± 0.009 0.54± 0.04 0.32± 0.006 0.78± 0.02
ρ 0.185 0.96± 0.007 0.53± 0.09 0.89± 0.009 0.49± 0.08 0.17± 0.004 0.71± 0.06

Ashear 0.12 0.94± 0.003 0.58± 0.03 0.93± 0.002 0.52± 0.03 0.11± 0.003 0.71± 0.02
Γ 0.1 0.93± 0.02 0.68± 0.17 0.93± 0.005 0.61± 0.15 0.12± 0.003 0.78± 0.12
γ 0.12 0.95± 0.003 0.37± 0.02 0.94± 0.002 0.32± 0.02 0.09± 0.003 0.54± 0.02

unsigned parameters achieved relatively higher values
of the optimized TSS and HSS than the total signed
and mean parameters. Among the total unsigned pa-
rameters, HC,total, ρtot, and Jz,total are also the high-
est ranked of univariate F -scores in Bobra & Couvi-
dat (2015). Our results are well consistent with Tori-
umi & Takasao (2017) who found that HC,total, ρtot,
and Jz,total are more strongly proportional to magnetic
free energy, calculated from 3D reconstructed magnetic
fields, than the other parameters.

Although we calculate various verification mea-
sures of ten magnetic parameters, it is difficult to de-
termine which parameter outperforms the others. Most
parameters have high values of measures with only
small differences. The result also depends on verifica-
tion, where the total unsigned parameters have slightly
better performance than the total signed parameters in
terms of optimized TSS and HSS, but the total signed
parameters can predict higher probabilities than the to-
tal unsigned parameters in practical forecasts for given
AR. The performances of converted binary forecasts de-
pend on the probability thresholds. When the proba-
bility threshold is small, TSS are very high but FAR are
also high. On the other hand, all verification measure
values are moderate in case of optimized HSS. Thus, the
decision-maker or user may select a proper threshold or
model for their own purpose.

The parameters that show a relatively good per-

formance are conventionally considered to be non-
potential parameters. This result supports the impor-
tance of non-potential magnetic fields in ARs (e.g., Low
1994; Canfield et al. 1999; Schrijver 2009; Jing et al.
2012; Zhang 2016). Bao et al. (1999) have found that
the time variations of current helicity in the highly flar-
ing active regions are more significant than those of the
poorly flaring active regions. The magnetic free en-
ergy plays an important role in producing major flares,
which has been already well known (Canfield et al. 1999;
Moore et al. 2001). Ji et al. (2003) revealed a quite
strong correlation between vertical current and flares.
Liu et al. (2016) suggested that the total unsigned ver-
tical current and the photospheric magnetic free energy
should be responsible for flare productivity. Our re-
sults, together with the previous results, demonstrate
the importance of the total quantities of non-potential
magnetic properties for flare forecasting (Welsch et al.
2009; Bobra & Couvidat 2015; Liu et al. 2017; Toriumi
& Takasao 2017).
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