DOI QR코드

DOI QR Code

FORECAST OF DAILY MAJOR FLARE PROBABILITY USING RELATIONSHIPS BETWEEN VECTOR MAGNETIC PROPERTIES AND FLARING RATES

  • Lim, Daye (School of Space Research, Kyung Hee University) ;
  • Moon, Yong-Jae (School of Space Research, Kyung Hee University) ;
  • Park, Jongyeob (Korea Astronomy and Space Science Institute) ;
  • Park, Eunsu (School of Space Research, Kyung Hee University) ;
  • Lee, Kangjin (School of Space Research, Kyung Hee University) ;
  • Lee, Jin-Yi (Department of Astronomy & Space Science, Kyung Hee University) ;
  • Jang, Soojeong (Korea Astronomy and Space Science Institute)
  • Received : 2019.04.24
  • Accepted : 2019.07.15
  • Published : 2019.08.31

Abstract

We develop forecast models of daily probabilities of major flares (M- and X-class) based on empirical relationships between photospheric magnetic parameters and daily flaring rates from May 2010 to April 2018. In this study, we consider ten magnetic parameters characterizing size, distribution, and non-potentiality of vector magnetic fields from Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager (HMI) and Geostationary Operational Environmental Satellites (GOES) X-ray flare data. The magnetic parameters are classified into three types: the total unsigned parameters, the total signed parameters, and the mean parameters. We divide the data into two sets chronologically: 70% for training and 30% for testing. The empirical relationships between the parameters and flaring rates are used to predict flare occurrence probabilities for a given magnetic parameter value. Major results of this study are as follows. First, major flare occurrence rates are well correlated with ten parameters having correlation coefficients above 0.85. Second, logarithmic values of flaring rates are well approximated by linear equations. Third, using total unsigned and signed parameters achieved better performance for predicting flares than the mean parameters in terms of verification measures of probabilistic and converted binary forecasts. We conclude that the total quantity of non-potentiality of magnetic fields is crucial for flare forecasting among the magnetic parameters considered in this study. When this model is applied for operational use, it can be used using the data of 21:00 TAI with a slight underestimation of 2-6.3%.

Keywords

References

  1. Ahmed, O. W., Qahwaji, R., Colak, T., et al. 2013, Solar Flare Prediction Using Advanced Feature Extraction, Machine Learning, and Feature Selection, SoPh, 283, 157
  2. Aulanier, G., Demoulin, P., Schrijver, C. J., Janvier, M., Pariat, E., & Schmieder, B. 2013, The Standard Flare Model in Three Dimensions II. Upper Limit on Solar Flare Energy, A&A, 549, A66 https://doi.org/10.1051/0004-6361/201220406
  3. Bao, S. D., Zhang, H. Q., Ai, G. X., & Zhang, M. 1999, A Survey of Flares and Current Helicity in Active Regions, A&AS, 139, 311 https://doi.org/10.1051/aas:1999396
  4. Barnes, G., Leka, K. D., Schrijver, C. J., et al. 2016, A Comparison of Flare Forecasting Methods. 1. Results from the "All-Clear" Workshop, ApJ, 829, 89 https://doi.org/10.3847/0004-637X/829/2/89
  5. Barnes, G., & Leka, K. D. 2006, Photospheric Magnetic Field Properties of Flaring Versus Flare-quiet Active Regions. 3. Magnetic Charge Topology Models, ApJ, 646, 1303 https://doi.org/10.1086/504960
  6. Barnes, G., Leka, K. D., Schumer, E. A., & Della-Rose, D. J. 2007, Probabilistic Forecasting of Solar Flares from Vector Magnetogram Data, SpWea, 5, S09002
  7. Bloomfield, D. S., Higgins, P. A., McAteer, R. T. J., & Gallagher, P. T. 2012, Toward Reliable Benchmarking of Solar Flare Forecasting Methods, ApJL, 747, L41 https://doi.org/10.1088/2041-8205/747/2/L41
  8. Bobra, M. G., & Couvidat, S. 2015, Solar Flare Prediction Using SDO/HMI Vector Magnetic Field Data with a Machine-learning Algorithm, ApJ, 798, 135 https://doi.org/10.1088/0004-637X/798/2/135
  9. Bobra, M. G., Sun, X., Hoeksema, J. T., et al. 2014, The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs - Space-Weather HMI Active REgion Patches, SoPh, 289, 3549
  10. Bocchialini, K., Grison, B., Menvielle, M., et al. 2018, Statistical Analysis of Solar Events Associated with Storm Sudden Commencements over One Year of Solar Maximum During Cycle 23: Propagation from the Sun to the Earth and Effects, SoPh, 293, 75
  11. Bornmann, P. L., & Shaw, D. 1994, Flare Rates and the McIntosh Active-region Classifications, SoPh, 150, 127
  12. Canfield, R. C., Hudson, H. S., & McKenzie, D. E. 1999, Sigmoidal Morphology and Eruptive Solar Activity, GeoRL, 26, 627
  13. Colak, T., & Qahwaji, R. 2009, Automated Solar Activity Prediction: A Hybrid Computer Platform Using Machine Learning and Solar Imaging for Automated Prediction of Solar Flares, SpWea, 7, S06001
  14. Cui, Y., Li, R., Zhang, L., He, Y., & Wang, H. 2006, Correlation between Solar Flare Productivity and Photospheric Magnetic Field Properties, SoPh, 237, 45
  15. Crown, M. D. 2012, Validation of the NOAA Space Weather Prediction Center's Solar Flare Forecasting Look-up Table and Forecaster-issued Probabilities, SpWea, 10, S06006
  16. Domingo, V., Fleck, B., & Poland, A. I. 1995, The SOHO Mission: An Overview, SoPh, 162, 1
  17. Falconer, D. A., Barghouty, A. F., Khazanov, I., & Moore, R. L. 2011, A Tool for Empirical Forecasting of Major Flares, Coronal Mass Ejections, and Solar Particle Events from a Proxy of Active-region Free Magnetic Energy, SpWea, 9, S04003
  18. Falconer, D. A., Moore, R. L., Barghouty, A. F., & Khazanov, I. 2014, MAG4 Versus Alternative Techniques for Forecasting Active Region Flare Productivity, SpWea, 12, 306
  19. Ferro, C. A T., & Stephenson, D. B. 2011, Extremal Dependence Indices: Improved Verification Measures for Deterministic Forecasts of Rare Binary Events, Wea. Forecasting, 26, 699 https://doi.org/10.1175/WAF-D-10-05030.1
  20. Fisher, G. H., Bercik, D. J., Welsch, B. T., & Hudson, H. S. 2012, Global Forces in Eruptive Solar Flares: The Lorentz Force Acting on the Solar Interior, SoPh, 277, 59
  21. Gallagher, P. T., Moon, Y.-J., & Wang, H. 2002, Activeregion Monitoring and Flare Forecasting. 1. Data Processing and First Results, SoPh, 209, 171
  22. Giovanelli, R. G. 1939, The Relationships between Eruptions and Sunspots, ApJ, 89, 555 https://doi.org/10.1086/144081
  23. Guennou, C., Pariat, E., Leake, J. E., & Vilmer, N. 2017, Testing Predictors of Eruptivity Using Parametric Flux Emergence Simulations, JSWSC, 7, A17
  24. Hale, G. E., Ellerman, F., Nicholson, S. B., & Joy, A. H. 1919, The Magnetic Polarity of Sun-spots, ApJ, 49, 153 https://doi.org/10.1086/142452
  25. Hoeksema, J. T., Liu, Y., Hayashi, K., et al. 2014, The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Overview and Performance, SoPh, 289, 3483
  26. Huang, X., & Wang, H.-N. 2013, Solar Flare Prediction Using Highly Stressed Longitudinal Magnetic Field Parameters, RAA, 13, 351
  27. Huang, X., Wang, H., Xu, L., et al. 2018, Deep Learning Based Solar Flare Forecasting Model. 1. Results for Line-of-sight Magnetograms, ApJ, 856, 7 https://doi.org/10.3847/1538-4357/aaae00
  28. Ji, H. S., Song, M. T., Zhang, Y. A., & Song, S. M. 2003, The Horizontal and Vertical Electric Currents in Three Solar Active Regions and Their Relations with Flares, Chin. Astron. Astrophys., 27, 79 https://doi.org/10.1016/S0275-1062(03)80009-7
  29. Jing, J., Park, S.-H., Liu, C., et al. 2012, Evolution of Relative Magnetic Helicity and Current Helicity in NOAA Active Region 11158, ApJL, 752, L9 https://doi.org/10.1088/2041-8205/752/1/L9
  30. Kontogiannis, I., Georgoulis, M. K., Park, S.-H., & Guerra, J. A. 2017, Non-neutralized Electric Currents in Solar Active Regions and Flare Productivity, SoPh, 292, 159
  31. Kubo, Y., Den, M., & Ishii, M. 2017, Verification of Operational Solar Flare Forecast: Case of Regional Warning Center Japan, JSWSC, 7, A20
  32. Kusano, K., Bamba, Y., Yamamoto, T. T., Toriumi, S., & Asai, A. 2012, Magnetic Field Structures Triggering Solar Flares And Coronal Mass Ejections, ApJ, 760, 31 https://doi.org/10.1088/0004-637X/760/1/31
  33. Lee, K., Moon, Y.-J., Lee, J.-Y., et al. 2012, Solar Flare Occurrence Rate and Probability in Terms of the Sunspot Classification Supplemented with Sunspot Area and Its Changes, SoPh, 281, 639
  34. Lee, K., Moon, Y.-J., & Nakariakov, V. M. 2016, Dependence of Occurrence Rates of Solar Flares and Coronal Mass Ejections on the Solar Cycle Phase and the Importance of Large-scale Connectivity, ApJ, 831, 131 https://doi.org/10.3847/0004-637X/831/2/131
  35. Leka, K. D., & Barnes, G. 2003a, Photospheric Magnetic Field Properties of Flaring Versus Flare-quiet Active Regions. 1. Data, General Approach, and Sample Results, ApJ, 595, 1277 https://doi.org/10.1086/377511
  36. Leka, K. D., & Barnes, G. 2003b, Photospheric Magnetic Field Properties of Flaring Versus Flare-quiet Active Regions. 2. Discriminant Analysis, ApJ, 595, 1296 https://doi.org/10.1086/377512
  37. Leka, K. D., & Barnes, G. 2007, Photospheric Magnetic Field Properties of Flaring Versus Flare-quiet Active Regions. 4. A Statistically Significant Sample, ApJ, 656, 1173 https://doi.org/10.1086/510282
  38. Leka, K. D., Barnes, G., & Wagner, E. 2018, The NWRA Classification Infrastructure: Description and Extension to the Discriminant Analysis Flare Forecasting System (DAFFS), JSWSC, 8, A25
  39. Li, R., Cui, Y., He, H., & Wang, H. 2008, Application of Support VectorMachine Combined with K-nearest Neighbors in Solar Flare and Solar Proton Events Forecasting, AdSpR, 42, 1469
  40. Li, R., & Zhu, J. 2013, Solar Flare Forecasting Based on Sequential Sunspot Data, RAA, 13, 1118
  41. Liu, C., Deng, N.,Wang, J. T. L., &Wang, H. 2017, Predicting Solar Flares Using SDO/HMI Vector Magnetic Data Products and the Random Forest Algorithm, ApJ, 843, 104 https://doi.org/10.3847/1538-4357/aa789b
  42. Liu, L., Wang, Y., Wang, J., Shen, C., Ye, P., Liu, R., Che, J., Zhang, Q., & Wang, S. 2016, Why Is a Flare-rich Active Region CME-poor?, ApJ, 826, 119 https://doi.org/10.3847/0004-637X/826/2/119
  43. Low, B. C. 1994, Magnetohydrodynamic Processes in the Solar Corona: Flares, Coronal Mass Ejections, and Magnetic Helicity, PhPl, 1, 1684 https://doi.org/10.1063/1.870671
  44. McAteer, R. T. J., Gallagher, P. T., & Ireland, J. 2005, Statistics of Active Region Complexity: A Large-scale Fractal Dimension Survey, ApJ, 631, 628 https://doi.org/10.1086/432412
  45. McCloskey, A. E., Gallagher, P. T., & Bloomfield, D. S. 2016, Flaring Rates and the Evolution of Sunspot Group McIntosh Classifications, SoPh, 291, 1711
  46. McIntosh, P. S. 1990, The Classification of Sunspot Groups, SoPh, 125, 251
  47. Moon, Y.-J., Choe, G. S., Yun, H. S., & Park, Y. D. 2001, Flaring Time Interval Distribution and Spatial Correlation of Major X-ray Solar Flares, JGR, 106, 29951 https://doi.org/10.1029/2000JA000224
  48. Moore, R. L., Sterling, A. C., Hudson, H. S., & Lemen, J. R. 2001, Onset of the Magnetic Explosion in Solar Flares and Coronal Mass Ejections, ApJ, 552, 833 https://doi.org/10.1086/320559
  49. Murray, S. A., Bingham, S., Sharpe, M., & Jackson, D. R. 2017, Flare Forecasting at the Met Office Space Weather Operations Centre, SpWea, 15, 577
  50. Nishizuka, N., Sugiura, K., Kubo, Y., et al. 2017, Solar Flare Prediction Model with Three Machine-learning Algorithms Using Ultraviolet Brightening and Vector Magnetograms, ApJ, 835, 156 https://doi.org/10.3847/1538-4357/835/2/156
  51. Nishizuka, N., Sugiura, K., Kubo, Y., et al. 2018, Deep Flare Net (DeFN) Model for Solar Flare Prediction, ApJ, 858, 113 https://doi.org/10.3847/1538-4357/aab9a7
  52. Park, E., Moon, Y.-J., Shin, S., et al. 2018, Application of the Deep Convolutional Neural Network to the Forecast of Solar Flare Occurrence Using Full-disk Solar Magnetograms, ApJ, 869, 91 https://doi.org/10.3847/1538-4357/aaed40
  53. Park, J., Moon, Y.-J., Choi, S., et al. 2017, Application of Decision-making to a Solar Flare Forecast in the Cost-loss Ratio Situation, SpWea, 15, 704
  54. Pesnell, W. D., Thompson, B. J., & Chamberlin, P. C. 2012, The Solar Dynamics Observatory (SDO), SoPh, 275, 3
  55. Qahwaji, R., & Colak, T. 2007, Automatic Short-term Solar Flare Prediction Using Machine Learning and Sunspot Associations, SoPh, 241, 195
  56. Raboonik, A., Safari, H., Alipour, N., & Wheatland, M. S. 2017, Prediction of Solar Flares Using Unique Signatures of Magnetic Field Images, ApJ, 834, 11 https://doi.org/10.3847/2041-8213/834/2/L11
  57. Sammis, I., Tang, F., & Zirin, H. 2000, The Dependence of Large Flare Occurrence on the Magnetic Structure of Sunspots, ApJ, 540, 583 https://doi.org/10.1086/309303
  58. Scherrer, P. H., Bogart, R. S., Bush, R. I., et al. 1995, The Solar Oscillations Investigation - Michelson Doppler Imager, SoPh, 162, 129
  59. Scherrer, P. H., Schou, J., Bush, R. I., et al. 2012, The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO), SoPh, 275, 207
  60. Schou, J., Scherrer, P. H., Bush, R. I., et al. 2012, Design and Ground Calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO), SoPh, 275, 229
  61. Schrijver, C. J. 2007, A Characteristic Magnetic Field Pattern Associated with All Major Solar Flares and Its Use in Flare Forecasting, ApJL, 655, L117 https://doi.org/10.1086/511857
  62. Schrijver, C. J. 2009, Driving Major Solar Flares and Eruptions: A Review, AdSpR, 43, 739
  63. Schwenn, R. 2006, Space Weather: The Solar Perspective, LRSP, 3, 2
  64. Shin, S., Lee, J.-Y., Moon, Y.-J., et al. 2016, Development of Daily Maximum Flare-Flux Forecast Models for Strong Solar Flares, SoPh, 291, 897
  65. Toriumi, S., & Takasao, S. 2017, Numerical Simulations of Flare-productive Active Regions: ${\delta}$-sunspots, Sheared Polarity Inversion Lines, Energy Storage, and Predictions, ApJ, 850, 39 https://doi.org/10.3847/1538-4357/aa95c2
  66. Tsurutani, B. T., Judge, D. L., Guarnieri, F. L., Gangopadhyay, P., Jones, A. R., et al. 2005, The October 28, 2003 Extreme EUV Solar Flares and Resultant Extreme Ionospheric Effect: Comparison to Other Halloween Events and the Bastille Day Event, GRL, 32, L03S09
  67. Welsch, B. T., Li, Y., Schuck, P. W., & Fisher, G. H. 2009, What Is the Relationship between Photospheric Flow Fields and Solar Flares?, ApJ, 705, 821 https://doi.org/10.1088/0004-637X/705/1/821
  68. Wheatland, M. S. 2000, The Origin of the Solar Flare Waiting-time Distribution, ApJL, 536, L109 https://doi.org/10.1086/312739
  69. Wheatland, M. S. 2005, A Statistical Solar Flare Forecast Method, SpWea, 3, S07003
  70. Yu, D., Huang, X., Wang, H., & Cui, Y. 2009, Shortterm Solar Flare Prediction Using a Sequential Supervised Learning Method, SoPh, 255, 91
  71. Yuan, Y., Shih, F. Y., Jing, J., & Wang, H.-M. 2010, Automated Flare Forecasting Using a Statistical Learning Technique, RAA, 10, 785
  72. Zhang, H. 2016, Photospheric Magnetic Free Energy Density of Solar Active Regions, SoPh, 291, 3501