Browse > Article
http://dx.doi.org/10.20910/JASE.2022.16.6.24

Capture Simulation for Space Objects Using Biomimetic Space Nets  

Mi, Jang (Department of Aerospace Engineering, Chungnam National University)
Hyun-Cheol, Shin (Department of Aerospace Engineering, Chungnam National University)
Chang-Hoon, Sim (Department of Aerospace Engineering, Chungnam National University)
Jae-Sang, Park (Department of Aerospace Engineering, Chungnam National University)
Hae-Seong, Cho (Department of Aerospace Engineering, Jeonbuk National University)
Publication Information
Journal of Aerospace System Engineering / v.16, no.6, 2022 , pp. 24-34 More about this Journal
Abstract
This paper investigates the capture of a 12U-sized CubeSat space object using a spider-web structure-based space net. The structural dynamics analysis program ABAQUS is used to simulate the shock-absorbing capability of the space net with a diagonal length of 2.828 m. The space object is modelled as a rigid body, and the space net is modelled using non-linear elastic beam elements. The simulations reveal that the spider-web structure-based space net outperforms the squared space net of the same structural weight in capturing the space object. The numerical simulations are conducted to examine the successful or unsuccessful captures of the space object in various cooperative and non-cooperative motions.
Keywords
Space object; Space net; Spider-web; Biomimetics; Capture simulation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 ESA Space Debris Office, "ESA's annual space environment report," no. 6, Apr. 2022.
2 NASA Orbital Debris Program Office, "Orbital debris quarterly news," vol. 26, no. 1, Mar. 2022.
3 J. C. Liou and N. L. Johnson, "Risks in space from orbiting debris," Science, vol. 311, no. 5759, pp. 340-341, Jan. 2006.   DOI
4 B. B. Virgili and H. Krag, "Analyzing the criteria for a stable environment," AAS/AIAA Astrodynamics Specialist Conference, vol. 411, Jul. 2011.
5 H.-D. Kim, and M.-K. Kim, "Recent Status on Active Space Debris Removal Technologies," Journal of the Korean Society for Aeronautical & Space Sciences, vol. 43, no. 9, pp. 845-857, Sep. 2015.
6 M. Shan, J. Guo, and E. Gill, "Review and comparison of active space debris capturing and removal methods," Progress in Aerospace Sciences, vol. 80, pp. 18-32, Nov. 2016.
7 ESA blog, https://blogs.esa.int/cleanspace/2017/02/09/space-debris-catch-it-if-we-can/
8 K. Wormnes, R. Le Letty, L.Summerer, R. Schonenborg, O. Dubois-Matra, E. Luraschi, A. Cropp, H. Krag, and J. Delaval, "ESA technologies for space debris remediation," In 6th European Conference on Space Debris, vol. 1, pp. 1-8, Apr. 2013.
9 J.-M. Choi, "Study on methods for space debris removal," Current Industrial and Technological Trends in Aerospace, vol. 14, no. 2, pp. 43-54, Dec. 2016.
10 J. L. Forshaw, G. S. Aglietti, S. Fellowes, T. Salmon, I. Retat, A. Hall, T. Chabot, A. Pisseloup, D. Tye, C. Bernal, F. Chaumette, A. Pollini, and W. H. Steyn, "The active space debris removal mission RemoveDebris. Part 1: From concept to launch," Acta Astronautica, vol. 168, pp. 293-309, Mar. 2020.   DOI
11 G. S. Aglietti, B. Taylor, S. Fellowes, T. Salmon, I. Retat, A. Hall, T. Chabot, A. Pisseloup, C. Cox, A. Zarkesh, A. Mafficini, N. Vinkoff, K. Bashford, C. Bernal, F. Chaumette, A. Pollini, and W. H. Steyn, "The active space debris removal mission RemoveDebris. Part 2: In orbit operations," Acta Astronautica, vol. 168, pp. 310-322, Mar. 2020.   DOI
12 E. M. Botta, I. Sharf, and A. K. Misra, "Contact dynamics modeling and simulation of tether nets for space-debris capture," Journal of Guidance, Control, and Dynamics, vol. 40, no. 1, pp. 110-123, Nov. 2017.   DOI
13 J. Si, Z. Pang, Z. Du, and C. Cheng, "Dynamics modeling and simulation of self-collision of tether-net for space debris removal," Advances in Space Research, vol. 64, no. 9, pp. 1675-1687, Nov. 2019.   DOI
14 W. Golebiowski, M. Dyrek, U. Battista, and K. Wormnes, "Validation of flexible bodies dynamics simulator in parabolic flight," In 66th International Astronautical Congress, vol. 1, pp. 491-502, Oct. 2015.
15 W. Golebiowski, R. Michalczyk, M. Dyrek, U. Battista, and K. Wormnes, "Validated simulator for space debris removal with nets and other flexible tethers applications," Acta Astronautica, vol. 129, pp. 229-240, Dec. 2016.   DOI
16 M. Shan, J. Guo, and E. Gill, "An analysis of the flexibility modeling of a net for space debris removal," Advances in Space Research, vol. 65, no. 3, pp. 1083-1094, Feb. 2020.   DOI
17 B. Xu, Y. Yang, Y. Yan, and B. Zhang, "Bionics design and dynamics analysis of space webs based on spider predation," Acta Astronautica, vol. 159, pp. 294-307, Jun. 2019.   DOI
18 M. Shan, J. Guo, E. Gill, and W. Golebiowski, "Validation of space net deployment modeling methods using parabolic flight experiment," Journal of Guidance, Control, and Dynamics, vol. 40, no. 12, pp. 3319-3327, Aug. 2017.   DOI
19 U.-J. Hwang, M. Jang, J.-H. Lim, H.-C. Shin, C.-H. Sim, and J.-S. Park, "Capture simulation study for space debris using space-nets," Journal of the Korean Society for Aeronautical & Space Sciences, vol. 50, no. 6, pp. 435-444, Jun. 2022.
20 Y. Jiang, and H. Nayeb-Hashemi, "Energy dissipation during prey capture process in spider orb webs," Journal of Applied Mechanics, vol. 87, no. 9, Jun. 2020.
21 I. F. Brown, and C. J. Burgoyne, "The friction and wear of Kevlar 49 sliding against aluminum at low velocity under high contact pressures," Wear, vol. 236, no. 1-2, pp. 315-327, Dec. 1999.   DOI
22 H.-C. Shin, C.-H. Sim, and J.-S. Park, "A Simulation study for space debris capture using a space net," The Society for Aerospace System Engineering Spring Conference, Jul. 2021.
23 E. M. Botta, "Deployment and capture dynamics of tether-nets for active space debris removal," Ph.D. thesis, McGill University, Nov. 2017.
24 I. Sharf, B. Thomsen, E. M. Botta, and A. K. Misra, "Experiments and simulation of a net closing mechanism for tether-net capture of space debris," Acta Astronautica, vol. 139, pp. 332-343, Oct. 2017.   DOI
25 DuPont F.T., "Klevlar® aramid fiber technical guide," Mar. 2019.
26 J. Silha, J. N. Pittet, M. Hamara, and T. Schildknecht, "Apparent rotation properties of space debris extracted from photometric measurements," Advances in space research, vol. 61, no. 3, pp. 844-861, Oct. 2018.    DOI
27 Dassault Systems Simulia Corp, "Abaqus 6.14 analysis user's manual," vol.5, 2014.
28 B. Xu, Y. Yang, B. Zhang, Y. Yan, and Z. Yi, "Bionic design and experimental study for the space flexible webs capture system," IEEE Access, vol. 8, pp. 45411-45420, Mar. 2020.   DOI