Browse > Article
http://dx.doi.org/10.5303/JKAS.2019.52.4.133

FORECAST OF DAILY MAJOR FLARE PROBABILITY USING RELATIONSHIPS BETWEEN VECTOR MAGNETIC PROPERTIES AND FLARING RATES  

Lim, Daye (School of Space Research, Kyung Hee University)
Moon, Yong-Jae (School of Space Research, Kyung Hee University)
Park, Jongyeob (Korea Astronomy and Space Science Institute)
Park, Eunsu (School of Space Research, Kyung Hee University)
Lee, Kangjin (School of Space Research, Kyung Hee University)
Lee, Jin-Yi (Department of Astronomy & Space Science, Kyung Hee University)
Jang, Soojeong (Korea Astronomy and Space Science Institute)
Publication Information
Journal of The Korean Astronomical Society / v.52, no.4, 2019 , pp. 133-144 More about this Journal
Abstract
We develop forecast models of daily probabilities of major flares (M- and X-class) based on empirical relationships between photospheric magnetic parameters and daily flaring rates from May 2010 to April 2018. In this study, we consider ten magnetic parameters characterizing size, distribution, and non-potentiality of vector magnetic fields from Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager (HMI) and Geostationary Operational Environmental Satellites (GOES) X-ray flare data. The magnetic parameters are classified into three types: the total unsigned parameters, the total signed parameters, and the mean parameters. We divide the data into two sets chronologically: 70% for training and 30% for testing. The empirical relationships between the parameters and flaring rates are used to predict flare occurrence probabilities for a given magnetic parameter value. Major results of this study are as follows. First, major flare occurrence rates are well correlated with ten parameters having correlation coefficients above 0.85. Second, logarithmic values of flaring rates are well approximated by linear equations. Third, using total unsigned and signed parameters achieved better performance for predicting flares than the mean parameters in terms of verification measures of probabilistic and converted binary forecasts. We conclude that the total quantity of non-potentiality of magnetic fields is crucial for flare forecasting among the magnetic parameters considered in this study. When this model is applied for operational use, it can be used using the data of 21:00 TAI with a slight underestimation of 2-6.3%.
Keywords
Sun: activity; Sun: flares; Sun: magnetic fields;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shin, S., Lee, J.-Y., Moon, Y.-J., et al. 2016, Development of Daily Maximum Flare-Flux Forecast Models for Strong Solar Flares, SoPh, 291, 897
2 Toriumi, S., & Takasao, S. 2017, Numerical Simulations of Flare-productive Active Regions: ${\delta}$-sunspots, Sheared Polarity Inversion Lines, Energy Storage, and Predictions, ApJ, 850, 39   DOI
3 Tsurutani, B. T., Judge, D. L., Guarnieri, F. L., Gangopadhyay, P., Jones, A. R., et al. 2005, The October 28, 2003 Extreme EUV Solar Flares and Resultant Extreme Ionospheric Effect: Comparison to Other Halloween Events and the Bastille Day Event, GRL, 32, L03S09
4 Welsch, B. T., Li, Y., Schuck, P. W., & Fisher, G. H. 2009, What Is the Relationship between Photospheric Flow Fields and Solar Flares?, ApJ, 705, 821   DOI
5 Wheatland, M. S. 2000, The Origin of the Solar Flare Waiting-time Distribution, ApJL, 536, L109   DOI
6 Wheatland, M. S. 2005, A Statistical Solar Flare Forecast Method, SpWea, 3, S07003
7 Yu, D., Huang, X., Wang, H., & Cui, Y. 2009, Shortterm Solar Flare Prediction Using a Sequential Supervised Learning Method, SoPh, 255, 91
8 Yuan, Y., Shih, F. Y., Jing, J., & Wang, H.-M. 2010, Automated Flare Forecasting Using a Statistical Learning Technique, RAA, 10, 785
9 Zhang, H. 2016, Photospheric Magnetic Free Energy Density of Solar Active Regions, SoPh, 291, 3501
10 Aulanier, G., Demoulin, P., Schrijver, C. J., Janvier, M., Pariat, E., & Schmieder, B. 2013, The Standard Flare Model in Three Dimensions II. Upper Limit on Solar Flare Energy, A&A, 549, A66   DOI
11 Bao, S. D., Zhang, H. Q., Ai, G. X., & Zhang, M. 1999, A Survey of Flares and Current Helicity in Active Regions, A&AS, 139, 311   DOI
12 Barnes, G., Leka, K. D., Schrijver, C. J., et al. 2016, A Comparison of Flare Forecasting Methods. 1. Results from the "All-Clear" Workshop, ApJ, 829, 89   DOI
13 Barnes, G., & Leka, K. D. 2006, Photospheric Magnetic Field Properties of Flaring Versus Flare-quiet Active Regions. 3. Magnetic Charge Topology Models, ApJ, 646, 1303   DOI
14 Barnes, G., Leka, K. D., Schumer, E. A., & Della-Rose, D. J. 2007, Probabilistic Forecasting of Solar Flares from Vector Magnetogram Data, SpWea, 5, S09002
15 Bloomfield, D. S., Higgins, P. A., McAteer, R. T. J., & Gallagher, P. T. 2012, Toward Reliable Benchmarking of Solar Flare Forecasting Methods, ApJL, 747, L41   DOI
16 Bobra, M. G., & Couvidat, S. 2015, Solar Flare Prediction Using SDO/HMI Vector Magnetic Field Data with a Machine-learning Algorithm, ApJ, 798, 135   DOI
17 Bobra, M. G., Sun, X., Hoeksema, J. T., et al. 2014, The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs - Space-Weather HMI Active REgion Patches, SoPh, 289, 3549
18 Bocchialini, K., Grison, B., Menvielle, M., et al. 2018, Statistical Analysis of Solar Events Associated with Storm Sudden Commencements over One Year of Solar Maximum During Cycle 23: Propagation from the Sun to the Earth and Effects, SoPh, 293, 75
19 Bornmann, P. L., & Shaw, D. 1994, Flare Rates and the McIntosh Active-region Classifications, SoPh, 150, 127
20 Canfield, R. C., Hudson, H. S., & McKenzie, D. E. 1999, Sigmoidal Morphology and Eruptive Solar Activity, GeoRL, 26, 627
21 McIntosh, P. S. 1990, The Classification of Sunspot Groups, SoPh, 125, 251
22 Liu, C., Deng, N.,Wang, J. T. L., &Wang, H. 2017, Predicting Solar Flares Using SDO/HMI Vector Magnetic Data Products and the Random Forest Algorithm, ApJ, 843, 104   DOI
23 Liu, L., Wang, Y., Wang, J., Shen, C., Ye, P., Liu, R., Che, J., Zhang, Q., & Wang, S. 2016, Why Is a Flare-rich Active Region CME-poor?, ApJ, 826, 119   DOI
24 Low, B. C. 1994, Magnetohydrodynamic Processes in the Solar Corona: Flares, Coronal Mass Ejections, and Magnetic Helicity, PhPl, 1, 1684   DOI
25 McAteer, R. T. J., Gallagher, P. T., & Ireland, J. 2005, Statistics of Active Region Complexity: A Large-scale Fractal Dimension Survey, ApJ, 631, 628   DOI
26 McCloskey, A. E., Gallagher, P. T., & Bloomfield, D. S. 2016, Flaring Rates and the Evolution of Sunspot Group McIntosh Classifications, SoPh, 291, 1711
27 Moon, Y.-J., Choe, G. S., Yun, H. S., & Park, Y. D. 2001, Flaring Time Interval Distribution and Spatial Correlation of Major X-ray Solar Flares, JGR, 106, 29951   DOI
28 Moore, R. L., Sterling, A. C., Hudson, H. S., & Lemen, J. R. 2001, Onset of the Magnetic Explosion in Solar Flares and Coronal Mass Ejections, ApJ, 552, 833   DOI
29 Murray, S. A., Bingham, S., Sharpe, M., & Jackson, D. R. 2017, Flare Forecasting at the Met Office Space Weather Operations Centre, SpWea, 15, 577
30 Nishizuka, N., Sugiura, K., Kubo, Y., et al. 2017, Solar Flare Prediction Model with Three Machine-learning Algorithms Using Ultraviolet Brightening and Vector Magnetograms, ApJ, 835, 156   DOI
31 Nishizuka, N., Sugiura, K., Kubo, Y., et al. 2018, Deep Flare Net (DeFN) Model for Solar Flare Prediction, ApJ, 858, 113   DOI
32 Leka, K. D., Barnes, G., & Wagner, E. 2018, The NWRA Classification Infrastructure: Description and Extension to the Discriminant Analysis Flare Forecasting System (DAFFS), JSWSC, 8, A25
33 Park, E., Moon, Y.-J., Shin, S., et al. 2018, Application of the Deep Convolutional Neural Network to the Forecast of Solar Flare Occurrence Using Full-disk Solar Magnetograms, ApJ, 869, 91   DOI
34 Park, J., Moon, Y.-J., Choi, S., et al. 2017, Application of Decision-making to a Solar Flare Forecast in the Cost-loss Ratio Situation, SpWea, 15, 704
35 Ahmed, O. W., Qahwaji, R., Colak, T., et al. 2013, Solar Flare Prediction Using Advanced Feature Extraction, Machine Learning, and Feature Selection, SoPh, 283, 157
36 Leka, K. D., & Barnes, G. 2003b, Photospheric Magnetic Field Properties of Flaring Versus Flare-quiet Active Regions. 2. Discriminant Analysis, ApJ, 595, 1296   DOI
37 Leka, K. D., & Barnes, G. 2007, Photospheric Magnetic Field Properties of Flaring Versus Flare-quiet Active Regions. 4. A Statistically Significant Sample, ApJ, 656, 1173   DOI
38 Li, R., Cui, Y., He, H., & Wang, H. 2008, Application of Support VectorMachine Combined with K-nearest Neighbors in Solar Flare and Solar Proton Events Forecasting, AdSpR, 42, 1469
39 Li, R., & Zhu, J. 2013, Solar Flare Forecasting Based on Sequential Sunspot Data, RAA, 13, 1118
40 Colak, T., & Qahwaji, R. 2009, Automated Solar Activity Prediction: A Hybrid Computer Platform Using Machine Learning and Solar Imaging for Automated Prediction of Solar Flares, SpWea, 7, S06001
41 Cui, Y., Li, R., Zhang, L., He, Y., & Wang, H. 2006, Correlation between Solar Flare Productivity and Photospheric Magnetic Field Properties, SoPh, 237, 45
42 Crown, M. D. 2012, Validation of the NOAA Space Weather Prediction Center's Solar Flare Forecasting Look-up Table and Forecaster-issued Probabilities, SpWea, 10, S06006
43 Domingo, V., Fleck, B., & Poland, A. I. 1995, The SOHO Mission: An Overview, SoPh, 162, 1
44 Fisher, G. H., Bercik, D. J., Welsch, B. T., & Hudson, H. S. 2012, Global Forces in Eruptive Solar Flares: The Lorentz Force Acting on the Solar Interior, SoPh, 277, 59
45 Falconer, D. A., Barghouty, A. F., Khazanov, I., & Moore, R. L. 2011, A Tool for Empirical Forecasting of Major Flares, Coronal Mass Ejections, and Solar Particle Events from a Proxy of Active-region Free Magnetic Energy, SpWea, 9, S04003
46 Falconer, D. A., Moore, R. L., Barghouty, A. F., & Khazanov, I. 2014, MAG4 Versus Alternative Techniques for Forecasting Active Region Flare Productivity, SpWea, 12, 306
47 Ferro, C. A T., & Stephenson, D. B. 2011, Extremal Dependence Indices: Improved Verification Measures for Deterministic Forecasts of Rare Binary Events, Wea. Forecasting, 26, 699   DOI
48 Gallagher, P. T., Moon, Y.-J., & Wang, H. 2002, Activeregion Monitoring and Flare Forecasting. 1. Data Processing and First Results, SoPh, 209, 171
49 Guennou, C., Pariat, E., Leake, J. E., & Vilmer, N. 2017, Testing Predictors of Eruptivity Using Parametric Flux Emergence Simulations, JSWSC, 7, A17
50 Giovanelli, R. G. 1939, The Relationships between Eruptions and Sunspots, ApJ, 89, 555   DOI
51 Hale, G. E., Ellerman, F., Nicholson, S. B., & Joy, A. H. 1919, The Magnetic Polarity of Sun-spots, ApJ, 49, 153   DOI
52 Hoeksema, J. T., Liu, Y., Hayashi, K., et al. 2014, The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Overview and Performance, SoPh, 289, 3483
53 Huang, X., & Wang, H.-N. 2013, Solar Flare Prediction Using Highly Stressed Longitudinal Magnetic Field Parameters, RAA, 13, 351
54 Huang, X., Wang, H., Xu, L., et al. 2018, Deep Learning Based Solar Flare Forecasting Model. 1. Results for Line-of-sight Magnetograms, ApJ, 856, 7   DOI
55 Kubo, Y., Den, M., & Ishii, M. 2017, Verification of Operational Solar Flare Forecast: Case of Regional Warning Center Japan, JSWSC, 7, A20
56 Ji, H. S., Song, M. T., Zhang, Y. A., & Song, S. M. 2003, The Horizontal and Vertical Electric Currents in Three Solar Active Regions and Their Relations with Flares, Chin. Astron. Astrophys., 27, 79   DOI
57 Jing, J., Park, S.-H., Liu, C., et al. 2012, Evolution of Relative Magnetic Helicity and Current Helicity in NOAA Active Region 11158, ApJL, 752, L9   DOI
58 Kontogiannis, I., Georgoulis, M. K., Park, S.-H., & Guerra, J. A. 2017, Non-neutralized Electric Currents in Solar Active Regions and Flare Productivity, SoPh, 292, 159
59 Lee, K., Moon, Y.-J., Lee, J.-Y., et al. 2012, Solar Flare Occurrence Rate and Probability in Terms of the Sunspot Classification Supplemented with Sunspot Area and Its Changes, SoPh, 281, 639
60 Kusano, K., Bamba, Y., Yamamoto, T. T., Toriumi, S., & Asai, A. 2012, Magnetic Field Structures Triggering Solar Flares And Coronal Mass Ejections, ApJ, 760, 31   DOI
61 Lee, K., Moon, Y.-J., & Nakariakov, V. M. 2016, Dependence of Occurrence Rates of Solar Flares and Coronal Mass Ejections on the Solar Cycle Phase and the Importance of Large-scale Connectivity, ApJ, 831, 131   DOI
62 Leka, K. D., & Barnes, G. 2003a, Photospheric Magnetic Field Properties of Flaring Versus Flare-quiet Active Regions. 1. Data, General Approach, and Sample Results, ApJ, 595, 1277   DOI
63 Pesnell, W. D., Thompson, B. J., & Chamberlin, P. C. 2012, The Solar Dynamics Observatory (SDO), SoPh, 275, 3
64 Qahwaji, R., & Colak, T. 2007, Automatic Short-term Solar Flare Prediction Using Machine Learning and Sunspot Associations, SoPh, 241, 195
65 Scherrer, P. H., Schou, J., Bush, R. I., et al. 2012, The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO), SoPh, 275, 207
66 Raboonik, A., Safari, H., Alipour, N., & Wheatland, M. S. 2017, Prediction of Solar Flares Using Unique Signatures of Magnetic Field Images, ApJ, 834, 11   DOI
67 Sammis, I., Tang, F., & Zirin, H. 2000, The Dependence of Large Flare Occurrence on the Magnetic Structure of Sunspots, ApJ, 540, 583   DOI
68 Scherrer, P. H., Bogart, R. S., Bush, R. I., et al. 1995, The Solar Oscillations Investigation - Michelson Doppler Imager, SoPh, 162, 129
69 Schou, J., Scherrer, P. H., Bush, R. I., et al. 2012, Design and Ground Calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO), SoPh, 275, 229
70 Schrijver, C. J. 2007, A Characteristic Magnetic Field Pattern Associated with All Major Solar Flares and Its Use in Flare Forecasting, ApJL, 655, L117   DOI
71 Schrijver, C. J. 2009, Driving Major Solar Flares and Eruptions: A Review, AdSpR, 43, 739
72 Schwenn, R. 2006, Space Weather: The Solar Perspective, LRSP, 3, 2