• Title/Summary/Keyword: Non-linear Shape

Search Result 314, Processing Time 0.024 seconds

An exact solution for free vibrations of a non-uniform beam carrying multiple elastic-supported rigid bars

  • Lin, Hsien-Yuan
    • Structural Engineering and Mechanics
    • /
    • v.34 no.4
    • /
    • pp.399-416
    • /
    • 2010
  • The purpose of this paper is to utilize the numerical assembly method (NAM) to determine the exact natural frequencies and mode shapes of a multi-step beam carrying multiple rigid bars, with each of the rigid bars possessing its own mass and rotary inertia, fixed to the beam at one point and supported by a translational spring and/or a rotational spring at another point. Where the fixed point of each rigid bar with the beam does not coincide with the center of gravity the rigid bar or the supporting point of the springs. The effects of the distance between the "fixed point" of each rigid bar and its center of gravity (i.e., eccentricity), and the distance between the "fixed point" and each linear spring (i.e., offset) are studied. For a beam carrying multiple various concentrated elements, the magnitude of each lumped mass and stiffness of each linear spring are the well-known key parameters affecting the free vibration characteristics of the (loaded) beam in the existing literature, however, the numerical results of this paper reveal that the eccentricity of each rigid bar and the offset of each linear spring are also the predominant parameters.

The Comparative Study of Software Optimal Release Time of Finite NHPP Model Considering Log Linear Learning Factor (로그선형 학습요인을 이용한 유한고장 NHPP모형에 근거한 소프트웨어 최적방출시기 비교 연구)

  • Cheul, Kim Hee;Cheul, Shin Hyun
    • Convergence Security Journal
    • /
    • v.12 no.6
    • /
    • pp.3-10
    • /
    • 2012
  • In this paper, make a study decision problem called an optimal release policies after testing a software system in development phase and transfer it to the user. When correcting or modifying the software, finite failure non-homogeneous Poisson process model, considering learning factor, presented and propose release policies of the life distribution, log linear type model which used to an area of reliability because of various shape and scale parameter. In this paper, discuss optimal software release policies which minimize a total average software cost of development and maintenance under the constraint of satisfying a software reliability requirement. In a numerical example, the parameters estimation using maximum likelihood estimation of failure time data, make out estimating software optimal release time.

Free Vibrations of Elastica Shaped Arches with Linear Taper (선형 변단면 정확탄성곡선형 아치의 자유진동)

  • Lee, Byoung Koo;Lee, Tae Eun;Kim, Gwon Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6A
    • /
    • pp.617-624
    • /
    • 2009
  • This study deals with the free vibrations of the elastica shaped arch with linear taper. The shape of elastica is obtained from the Bernoulli-Euler beam theory. Differential equations governing free vibrations of such arch are derived and numerically solved to determine natural frequencies, in which three kinds of taper type and two kinds of end constraint, respectively, are considered. For validating the theories presented herein, the frequency parameters obtained in this study are compared to those of SAP 2000. As results of the numerical analyses, effects of end constraint, taper type, slenderness ratio and section ratio on the lowest four non-dimensional frequency parameters are extensively investigated.

Neuro-fuzzy and artificial neural networks modeling of uniform temperature effects of symmetric parabolic haunched beams

  • Yuksel, S. Bahadir;Yarar, Alpaslan
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.787-796
    • /
    • 2015
  • When the temperature of a structure varies, there is a tendency to produce changes in the shape of the structure. The resulting actions may be of considerable importance in the analysis of the structures having non-prismatic members. The computation of design forces for the non-prismatic beams having symmetrical parabolic haunches (NBSPH) is fairly difficult because of the parabolic change of the cross section. Due to their non-prismatic geometrical configuration, their assessment, particularly the computation of fixed-end horizontal forces and fixed-end moments becomes a complex problem. In this study, the efficiency of the Artificial Neural Networks (ANN) and Adaptive Neuro Fuzzy Inference Systems (ANFIS) in predicting the design forces and the design moments of the NBSPH due to temperature changes was investigated. Previously obtained finite element analyses results in the literature were used to train and test the ANN and ANFIS models. The performances of the different models were evaluated by comparing the corresponding values of mean squared errors (MSE) and decisive coefficients ($R^2$). In addition to this, the comparison of ANN and ANFIS with traditional methods was made by setting up Linear-regression (LR) model.

Effects of Pressure Tapping Conditions on Flow Rate Measurement of Triangular Separate Bar Differential Pressure Flow Meter (삼각 분리 막대형 차압유량계 압력탭 조건이 유량 측정에 미치는 영향)

  • Lee, Choong-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.2
    • /
    • pp.1-6
    • /
    • 2010
  • Flow characteristics of differential pressure flow meters which have a shape of triangular separate bar (TSB) was investigated according to the machining conditions in pressure tapping holes. Diameter of the pressure taping holes is either 1.0 mm or 1.5 mm. Also, number of the pressure tapping holes are drilled either 9 or 17. The mass flow rate of the TSB flow meters are calibrated with a laminar flow meter by connecting them in line. The mass flow rate in the TSB flow meters are plotted with a non-dimensional parameter H which includes the gas temperature, exhaust gas pressure and differential pressure at the flow meters. An empirical correlation between the mass flow rate at the TSB flow meter and the non-dimensional parameter H was obtained. The empirical correlation showed highly linear relationship between the mass flow rate and the non-dimensional parameter H. The hole size of the pressure tapping holes has a bigger effect on the flow rate than the number of the tapping holes.

A Study on features and Interpretation of Placeness of Rem Koolhaas' Architecture (렘 콜하스 건축의 장소적 특성과 해석에 관한 연구)

  • Park, Hyung-Jin;Kim, Moon-Duck
    • Korean Institute of Interior Design Journal
    • /
    • v.16 no.2 s.61
    • /
    • pp.87-96
    • /
    • 2007
  • This study analyzes the place of modem architecture based on the place theory of C. N, Schultz. For applying Schultz's theory to the modern architecture, It is required to examine the modern cityscape, features of inner space of architecture and features of program. By analyzing the avant-garde architecture of Rem Koolhaas on such basis, the potentiality of placeness of modern architecture could be verified and the alternatives would be searched. It is inferred that the placeness features of Rem Koolhaas' public architecture is under the influence of the interpretation of program based on the humane background rather than the physical aspects of surroundings. The inner space shows the non-linear features, the metaphor of city. The obscurity of physical boundary illustrates the flexible features with ambiguous boundary. Consequently, the inner space expresses the surreal atmosphere that doesn't match the purposes of usage of architecture, the traditional concept. The outer shape is recognized as the by-product from the interpretation of internal program rather than it considered the surrounding context. The outer shape has the relatively simple formative shape and contrasts against the complicated inner space by using the non-physical materials. It is found that Koolhaas' architecture doesn't pursue the features of placeness of traditional concept. However, It is inferred that his architecture has the possibility of placeness by attaching the meaning through the social roles of each architecture. It gives the substantial suggestion to the modern architecture that can't easily acquire the placeness of traditional concept due to the environment of modern city.

Behavior of Columns Due to Variation of Performance Influencing Factors Based on Performance Based Design (성능기반설계에 기초한 성능영향인자 변화에 따른 기둥의 거동분석)

  • Yun, Sung-Hwan;Choi, Min-Choul;Kang, Yoon-Sig;Park, Tae-Hyo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.489-498
    • /
    • 2010
  • The performance evaluation of reinforcement concrete structure is carried out as a function of the following performance influencing factors: (1) the strength of concrete, (2) longitudinal reinforcement, (3) transverse reinforcement, (4) aspect ratio, and (5) axial force. With various values of the five parameters, eigenvalue analysis and non-linear static analysis were performed to investigate the structural yield displacement, yield basis shear force, and static performance of ductility ratio. In addition, the performance evaluation is carried out according to the modified capacity spectrum method (FEMA-440) using the results of non-linear static analysis, and the effect of each parameter on performance point is analyzed. Based on the result of eigenvalue analysis and non-linear static analysis indicates, that the natural period and the ductility ratio are affected more by the structural properties than the material properties. In case of the analysis of the criterion of performance points, the effect of section shape is one of the important factors together with natural period and ductility ratio.

Effective Simulation Control for Deformable Object (변형 가능한 물체를 위한 효과적인 시뮬레이션 제어)

  • Hong, Min;Choi, Min-Hyung
    • The Journal of Korean Association of Computer Education
    • /
    • v.8 no.1
    • /
    • pp.73-80
    • /
    • 2005
  • To achieve a natural and plausible interaction with deformable objects and to setup the desirable initial conditions of simulation, user should be able to define and control the geometric constraints intuitively. In addition, user should be able to utilize the simulation as a problem solving platform by experimenting various simulation situations without major modification of the simulator. The proposed physically based geometric constraint simulation system solves the problem using a non-linear finite element method approach to represent deformable objects and constraint forces are generated by defining geometric constraints on the nodes of the object to maintain the restriction. It allows user to define and modify geometric constraints and an algorithm converts these geometric constraints into constraint forces which seamlessly integrate controllability to the simulation system. Simulator can handle linear, angular, inequality based geometric constraints on the objects. Our experimental results show that constraints are maintained in the tight error bound and preserve desired shape of deformable object during the entire simulation.

  • PDF

Analog active valve control design for non-linear semi-active resetable devices

  • Rodgers, Geoffrey W.;Chase, J. Geoffrey;Corman, Sylvain
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.487-497
    • /
    • 2017
  • Semi-active devices use the building's own motion to produce resistive forces and are thus strictly dissipative and require little power. Devices that independently control the binary open/closed valve state can enable novel device hysteresis loops that were not previously possible. However, some device hysteresis loops cannot be obtained without active analog valve control allowing slower, controlled release of stored energy, and is presents an ongoing limitation in obtaining the full range of possibilities offered by these devices. This in silico study develops a proportional-derivative feedback control law using a validated nonlinear device model to track an ideal diamond-shaped force-displacement response profile using active analog valve control. It is validated by comparison to the ideal shape for both sinusoidal and random seismic input motions. Structural application specific spectral analysis compares the performance for the non-linear, actively controlled case to those obtained with an ideal, linear model to validate that the potential performance will be retained when considering realistic nonlinear behaviour and the designed valve control approach. Results show tracking of the device force-displacement loop to within 3-5% of the desired ideal curve. Valve delay, rather than control law design, is the primary limiting factor, and analysis indicates a ratio of valve delay to structural period must be 1/10 or smaller to ensure adequate tracking, relating valve performance to structural period and overall device performance under control. Overall, the results show that active analog feedback control of energy release in these devices can significantly increase the range of resetable, valve-controlled semi-active device performance and hysteresis loops, in turn increasing their performance envelop and application space.

Structural Analysis of S-cam Brake Shoe for Commercial Vehicle by FEM (FEM을 이용한 상용차용 S-cam 브레이크슈의 구조해석)

  • Suh, Chang-Min;Jee, Hyun-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.69-77
    • /
    • 2009
  • Structural analysis of a brake shoe for commercial vehicle was performed using finite element method. Since the strength of a brake shoe is affected by the magnitude and distribution shape of the contact pressure with the drum, the contact pressure between the shoe friction material and drum was calculated using a 2-Dimensional non-linear contact analysis in a state. And the brake was actuated by input air pressure and the drum of it was calculated both stationary and dynamic based on forced torque applied to the drum during the static state analysis. The results of the above analysis were then used as the load boundary conditions for a 3-Dimensional shoe model analysis to determine the maximum strain on the shoes. In the analysis model, the values of tensile test were used for the material properties of the brake shoes and drum, while the values of compression test were used for the friction material. We assumed it as linear variation, even though the properties of friction material were actually non-linear. The experiments were carried out under the same analysis conditions used for fatigue test and under the same brake system which equipped with a brake drum based on the actual axle state in a vehicle. The strains were measured at the same locations where the analysis was performed on the shoes. The obtained results of the experiment matched well with those from the analysis. Consequently, the model used in this study was able to determine the stress at the maximum air pressure at the braking system, thereby a modified shoe model in facilitating was satisfied with the required endurance strength in the vehicle.