• Title/Summary/Keyword: Non-iterative Algorithm

Search Result 177, Processing Time 0.021 seconds

Hierarchical Optimal Control of Non-linear Systems using Fast Walsh Transform (FWT를 이용한 비선형계의 계층별 최적제어)

  • Jeong, Je-Uk;Jo, Yeong-Ho;Im, Guk-Hyeon;An, Du-Su
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.415-422
    • /
    • 2000
  • This paper presents a new algorithm for hierarchical optimal control of nonlinear systems. The proposed method is simple because the solutions are obtained by only exchanging informations of coefficient vector based on interaction prediction principle and FWT(fast Walsh transform) in upper and lower level. Since we solve two point boundary problem with Picard's iterative method and the backward integral operational matrix of Walsh function to obtain the optimal vector of each independent subsystem, the algorithm is simple and its operation is fast without inverse matrix and kronecker product operation. In simulation, the proposed algorithm's usefulness is proved by comparison with the global optimal control methods.

  • PDF

Polynomial-Filled Function Algorithm for Unconstrained Global Optimization Problems

  • Salmah;Ridwan Pandiya
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.1
    • /
    • pp.95-111
    • /
    • 2024
  • The filled function method is useful in solving unconstrained global optimization problems. However, depending on the type of function, and parameters used, there are limitations that cause difficultiies in implemenations. Exponential and logarithmic functions lead to the overflow effect, requiring iterative adjustment of the parameters. This paper proposes a polynomial-filled function that has a general form, is non-exponential, nonlogarithmic, non-parameteric, and continuously differentiable. With this newly proposed filled function, the aforementioned shortcomings of the filled function method can be overcome. To confirm the superiority of the proposed filled function algorithm, we apply it to a set of unconstrained global optimization problems. The data derived by numerical implementation shows that the proposed filled function can be used as an alternative algorithm when solving unconstrained global optimization problems.

Energy Efficiency Maximization for Energy Harvesting Bidirectional Cooperative Sensor Networks with AF Mode

  • Xu, Siyang;Song, Xin;Xia, Lin;Xie, Zhigang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2686-2708
    • /
    • 2020
  • This paper investigates the energy efficiency of energy harvesting (EH) bidirectional cooperative sensor networks, in which the considered system model enables the uplink information transmission from the sensor (SN) to access point (AP) and the energy supply for the amplify-and-forward (AF) relay and SN using power-splitting (PS) or time-switching (TS) protocol. Considering the minimum EH activation constraint and quality of service (QoS) requirement, energy efficiency is maximized by jointly optimizing the resource division ratio and transmission power. To cope with the non-convexity of the optimizations, we propose the low complexity iterative algorithm based on fractional programming and alternative search method (FAS). The key idea of the proposed algorithm first transforms the objective function into the parameterized polynomial subtractive form. Then we decompose the optimization into two convex sub-problems, which can be solved by conventional convex programming. Simulation results validate that the proposed schemes have better output performance and the iterative algorithm has a fast convergence rate.

Energy-efficient semi-supervised learning framework for subchannel allocation in non-orthogonal multiple access systems

  • S. Devipriya;J. Martin Leo Manickam;B. Victoria Jancee
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.963-973
    • /
    • 2023
  • Non-orthogonal multiple access (NOMA) is considered a key candidate technology for next-generation wireless communication systems due to its high spectral efficiency and massive connectivity. Incorporating the concepts of multiple-input-multiple-output (MIMO) into NOMA can further improve the system efficiency, but the hardware complexity increases. This study develops an energy-efficient (EE) subchannel assignment framework for MIMO-NOMA systems under the quality-of-service and interference constraints. This framework handles an energy-efficient co-training-based semi-supervised learning (EE-CSL) algorithm, which utilizes a small portion of existing labeled data generated by numerical iterative algorithms for training. To improve the learning performance of the proposed EE-CSL, initial assignment is performed by a many-to-one matching (MOM) algorithm. The MOM algorithm helps achieve a low complex solution. Simulation results illustrate that a lower computational complexity of the EE-CSL algorithm helps significantly minimize the energy consumption in a network. Furthermore, the sum rate of NOMA outperforms conventional orthogonal multiple access.

Pulse pile-up correction by auto-regression on linear operations (ARLO) method: A comparison with integration-based algorithms

  • Mohammad-Reza Mohammadian-Behbahani
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3904-3913
    • /
    • 2024
  • Radiation detection at high count rate suffers from pulse pile-up, where the counting data and energy information of the system are affected by the overlapping of the system output pulses. There exist various pile-up correction strategies to recover the true information of the pulses, among which pulse-tail extrapolation is a well-known method focused on in this study. Present work aims to use a mono-exponential model for extrapolating the pileup-distorted trailing edge of a pulse, to provide a reference line for calculating the true amplitude of its subsequent overlapping pulse. To this goal, the auto-regression on linear operations (ARLO) method is examined and compared with two integration-based methods (the Foss and the Matheson methods), as well as the non-linear least squares (NLS) method. Despite a higher sensitivity to noise, the ARLO method was able to provide a simple, non-iterative solution with a performance over 400 times faster than the NLS algorithm, according to the analysis of a high count rate set of experimental pulses from a NaI(Tl) detection system. Foss and Matheson methods also provided solutions reasonably faster than NLS (but not surpassing ARLO), performing exactly the same as each other with results very close to NLS, benefiting from their non-iterative nature.

Immediate solution of EM algorithm for non-blind image deconvolution

  • Kim, Seung-Gu
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.2
    • /
    • pp.277-286
    • /
    • 2022
  • Due to the uniquely slow convergence speed of the EM algorithm, it suffers form a lot of processing time until the desired deconvolution image is obtained when the image is large. To cope with the problem, in this paper, an immediate solution of the EM algorithm is provided under the Gaussian image model. It is derived by finding the recurrent formular of the EM algorithm and then substituting the results repeatedly. In this paper, two types of immediate soultion of image deconboution by EM algorithm are provided, and both methods have been shown to work well. It is expected that it free the processing time of image deconvolution because it no longer requires an iterative process. Based on this, we can find the statistical properties of the restored image at specific iterates. We demonstrate the effectiveness of the proposed method through a simple experiment, and discuss future concerns.

Modified Adaptive Random Testing through Iterative Partitioning (반복 분할 기반의 적응적 랜덤 테스팅 향상 기법)

  • Lee, Kwang-Kyu;Shin, Seung-Hun;Park, Seung-Kyu
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.5
    • /
    • pp.180-191
    • /
    • 2008
  • An Adaptive Random Testing (ART) is one of test case generation algorithms that are designed to detect common failure patterns within input domain. The ART algorithm shows better performance than that of pure Random Testing (RT). Distance-bases ART (D-ART) and Restriction Random Testing (RRT) are well known examples of ART algorithms which are reported to have good performances. But significant drawbacks are observed as quadratic runtime and non-uniform distribution of test case. They are mainly caused by a huge amount of distance computations to generate test case which are distance based method. ART through Iterative Partitioning (IP-ART) significantly reduces the amount of computation of D-ART and RRT with iterative partitioning of input domain. However, non-uniform distribution of test case still exists, which play a role of obstacle to develop a scalable algerian. In this paper we propose a new ART method which mitigates the drawback of IP-ART while achieving improved fault-detection capability. Simulation results show that the proposed one has about 9 percent of improved F-measures with respect to other algorithms.

An Adaptive Gradient-Projection Image Restoration Algorithm with Spatial Local Constraints (공간 영역 제약 정보를 이용한 적응 Gradient-Projection 영상 복원 방식)

  • 송원선;홍민철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3C
    • /
    • pp.232-238
    • /
    • 2003
  • In this paper, we propose a spatially adaptive image restoration algorithm using local statistics. The local mean, variance, and maximum values are utilized to constrain the solution space, and these parameters are computed at each iteration step using partially restored image. A parameter defined by the user determines the degree of local smoothness imposed on the solution. The resulting iterative algorithm exhibits increased convergence speed when compared to the non-adaptive algorithm. In addition, a smooth solution with a controlled degree of smoothness is obtained. Experimental results demonstrate the capability of the proposed algorithm.

Design of a reduced-order $H_{\infty}$ controller using an LMI method (LMI를 이용한 축소차수 $H_{\infty}$ 제어기 설계)

  • Kim, Seog-Joo;Chung, Soon-Hyun;Cheon, Jong-Min;Kim, Chun-Kyung;Lee, Jong-Moo;Kwon, Soon-Man
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.729-731
    • /
    • 2004
  • This paper deals with the design of a low order $H_{\infty}$ controller by using an iterative linear matrix inequality (LMI) method. The low order $H_{\infty}$ controller is represented in terms of LMIs with a rank condition. To solve the non-convex rank-constrained LMI problem, a linear penalty function is incorporated into the objective function so that minimizing the penalized objective function subject to LMIs amounts to a convex optimization problem. With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. The proposed algorithm is, therefore, convergent. Numerical experiments show the effectiveness of the proposed algorithm.

  • PDF

Design of a Static Output Feedback Stabilization Controller by Solving a Rank-constrained LMI Problem (선형행렬부등식을 이용한 정적출력궤환 제어기 설계)

  • Kim Seogj-Joo;Kwon Soonman;Kim Chung-Kyung;Moon Young-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.11
    • /
    • pp.747-752
    • /
    • 2004
  • This paper presents an iterative linear matrix inequality (LMI) approach to the design of a static output feedback (SOF) stabilization controller. A linear penalty function is incorporated into the objective function for the non-convex rank constraint so that minimizing the penalized objective function subject to LMIs amounts to a convex optimization problem. Hence, the overall procedure results in solving a series of semidefinite programs (SDPs). With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. The proposed algorithm is, therefore, convergent. Extensive numerical experiments are Deformed to illustrate the proposed algorithm.