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Abstract 
 

This paper investigates the energy efficiency of energy harvesting (EH) bidirectional 
cooperative sensor networks, in which the considered system model enables the uplink 
information transmission from the sensor (SN) to access point (AP) and the energy supply for 
the amplify-and-forward (AF) relay and SN using power-splitting (PS) or time-switching (TS) 
protocol. Considering the minimum EH activation constraint and quality of service (QoS) 
requirement, energy efficiency is maximized by jointly optimizing the resource division ratio 
and transmission power. To cope with the non-convexity of the optimizations, we propose the 
low complexity iterative algorithm based on fractional programming and alternative search 
method (FAS). The key idea of the proposed algorithm first transforms the objective function 
into the parameterized polynomial subtractive form. Then we decompose the optimization into 
two convex sub-problems, which can be solved by conventional convex programming. 
Simulation results validate that the proposed schemes have better output performance and the 
iterative algorithm has a fast convergence rate. 
 
 
Keywords: Cooperative sensor network, energy efficiency, power splitting protocol, time 
switching protocol, amplify-and-forward relay  
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1. Introduction 

Due to the limited transmission range of wireless sensor networks, cooperative technologies 
can be used to expend coverage and achieve higher spatial diversity, in which the relay node is 
played by an idle sensor [1, 2]. However, the sensors are generally placed in the human body 
or special environment. In actual operation, it is inconvenient and expensive to recharge or 
replace the batteries [3]. Furthermore, the cooperative sensors may be reluctant to consume 
their energy to assist the transmission, which results in the power-constrained problems. For 
this difficulty, EH is a new green technology to provide continuous power supply for the 
wireless devices by harvesting energy from ambient environment. Besides traditional EH 
sources such as solar, wind and heat, a new solution is to exploit the energy carried by radio 
frequency (RF) signals [4]. Subsequently, two major EH relay protocols named as “time 
switching (TS) protocol” and “power splitting (PS) protocol” are proposed for cooperative 
networks [5]. For the TS relay protocol, the total transmission process can be divided into 
three phases, which are used for EH, information receiving and information relaying 
respectively. For the PS relay protocol, the relay nodes split the received signal into two 
streams with different power to achieve energy supply and information decoding [6]. In 
conventional EH one-way relay systems, the throughput maximization is investigated with 
amplify-and-forward (AF) and decode-and-forward (DF) relay mode [7-9]. Furthermore, EH 
technologies are applied to the internet of things and cognitive networks to solve the 
power-constrained problems of wireless devices [10, 11]. In [12, 13],  the time resource 
assignment for the backscatter-aided RF powered cognitive radio networks is investigated. On 
the other hand, due to the broadcast nature of RF energy transmission, system security will not 
be guaranteed. Therefore, an artificial-noise-aided beamforming design is proposed for a 
downlink multi-input single-output (MISO) EH network and a two-tier heterogeneous EH 
cellular network [14, 15]. In [16], the minimum transmission power optimization guaranteeing 
the secrecy rate constraint and the transmit power constraint is solved by using the 
S-procedure and semidefinite relaxation techniques, in which the relay can utilize the PS or TS 
relay protocol to harvest energy. 

Comparing with one-way relay systems, two-way relaying has been widely used in various 
EH networks owing to its high spectrum efficiency. Time division broadcast (TDBC) and 
multiple access broadcast (MABC) are two major two-way relay protocols, which can realize 
that two terminals exchange information through an EH intermediate relay [17-26]. For TDBC 
EH protocol, the total transmission process is divided into three unequal length slots, and the 
relay node can harvest energy from two sources in the first two time phases [17, 18]. In [19-21], 
energy efficiency and outage performance are optimized with DF relay mode. For the MABC 
EH protocol, the relay node can harvest energy from two sources in the same phases [22-26]. 
Under PS protocol, the optimal power allocation and relay selection schemes based on 
max-min rate of two links are designed with perfect and imperfect channel state information 
(CSI) [22, 23]. And the joint power allocation and relay selection scheme based on the TS 
protocol is proposed in [24]. Taking the sum rate as the performance metric, the power 
allocation schemes are also investigated in two-way EH networks [25, 26].  

In some typical sensor networks, remote sensors need to transmit real-time information to 
the AP through the relay node, in which both sensors and relay nodes are energy-constrained. 
Inspired by the traditional two-way relay networks, the EH bidirectional cooperative system 
networks are proposed to solve this problem, in which both the SN and relay can be charged 
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via the wireless powered transfer [27-30]. In [27, 28], the instantaneous rate maximization 
problems with respect to the resource division ratio are studied with the situations of one and 
multiple DF relay nodes. As the extension of [27, 28], the energy efficiency maximization 
optimization is investigated in [29]. However, the joint optimization problem in [29] is not 
solved due to the non-convexity of the objective function. Besides, the basic QoS constraints 
and EH activation constraints in energy efficiency optimization problems are also ignored. 
Using the AF relay node, the optimal closed-form resource division ratio can be obtained to 
maximize the instantaneous rate under the special case AP →∞ [30].  

With the development of the concepts of environmental protection and sustainable 
development, energy efficiency has been an important metric to evaluate the network 
performance of cellular mobile communication systems [31, 32]. And a joint optimization 
problem of computation and communication power is formulated for multi-user massive 
MIMO systems with partially-connected structures of RF transmission systems [33]. However, 
most energy efficiency maximization problems are non-convex. To cope with these problems, 
the iterative algorithms are proposed to transform the original non-convex problem into the 
convex problems step by step [34]. Using fractional programming, the fractional form of the 
objective function can be transferred to a parameterized polynomial subtractive form, which 
can be solved by Dinkelbach’s method [35]. The non-convex constraints can be integrated into 
the objective function by Lagrange dual method [36] or exact penalty method [37]. In addition, 
the alternative search method can decompose the optimization into sub-problems that are easy 
to solve [38]. Hence, the above optimization algorithm has great inspiration for solving 
non-convex optimizations of this paper. 

The main contributions of this paper are summarized as follows: 
1. In this paper, we investigate the energy efficiency of EH bidirectional cooperative sensor 

networks with AF mode, in which the relay node can assist uplink information transmission 
from the SN to AP and the downlink energy transmission from the AP to SN. The considered 
system model can solve the power-constrained of the relay and SN using TS or PS protocol. 
Furthermore, we also consider the imperfect self-interference cancellation (SIC) with the PS 
relay protocol, which is more in line with the actual application scenario. To maximize the 
energy efficiency, the joint optimizations of the transmission power and resource division ratio 
are formulated subject to the EH activation and QoS requirement.  

2. For the formulated non-convex optimizations, we propose the low complexity FAS 
iterative algorithm based on fractional programming and alternative search method to obtain 
the global optimal transmission power and resource division ratio. The key idea of the 
proposed algorithm first converts the objective function into the parameterized polynomial 
subtractive form by fractional programming. However, the converted optimizations are still 
non-convex. Hence, we decompose the optimizations into two sub-problems, which can be 
proved to be convex. The local solutions can be obtained by conventional convex 
programming and the global solutions can be obtained by the alternative search method.  

3. Simulation results illustrate the convergence and low complexity of the proposed FAS 
algorithm. Furthermore, we compare the proposed schemes with other conventional schemes, 
which show that the proposed schemes can provide more performance gain over conventional 
schemes. 

The rest of this paper is organized as follows. The proposed EH bidirectional cooperative 
sensor networks are described in Section 2. Considering the EH activation constraint and the 
minimum target rate requirement, the energy efficiency maximization problems are 
formulated. And a distributed iterative algorithm with low complexity is proposed to solve the 
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non-convex optimization in Section 3. Simulation results verify the effectiveness of the 
proposed resource allocation strategies in Section 4. Section 5 concludes this paper. 

2. System Model 
The considered EH bidirectional cooperative sensor network is depicted in Fig. 1, in which the 
SN sends the information to the AP with the help of an AF relay. All nodes are equipped with 
a single antenna for half-duplex operation. The relay node is acted by the idle sensor, which 
serves dual roles to achieve both energy and information relaying. The relay node and SN are 
power-constrained and solely powered by EH, while the AP can be powered by on-grid power. 
All the harvested energy of SN and relay is consumed for information transmission. To 
maintain the switching between wireless power and information transmission, the storage unit 
is equipped at both relay and SN, which is a rechargeable battery. Using the existing energy of 
the SN battery can initialize the information transmission before EH [29]. Due to the 
long-distance and deep fading, the direct link between AP and SN is ignored. Moreover, it is 
assumed that the quasi-static channel model with perfect CSI can be obtained by the 
transmitters. In practice, the CSI can be acquired by the pilot-assisted reverse-link channel 
training [30]. 

Relay(idle sensor)AP
SN

Energy flowInformation flow
 

Fig. 1. The system model of bidirectional cooperative sensor networks. 

2.1 Power Splitting Protocol 

T/2 T/2

Energy
Information

RAP SN Energy
Information

RAP SN

  
Fig. 2. Bidirectional cooperative sensor networks with PS protocol. 

 
For PS protocol, the entire transmission duration of the bidirectional relay system is completed 
within two equal phases / 2T . As illustrated in Fig. 2, the relay receives the energy 
signal ax and information signal sx transmitted from the AP and SN during the first phase. 
Therefore, the received signal of the relay can be given by 
 

R A a S s Ry P hx P gx n= + + .                                             (1) 
 
where SP and AP denote the transmission powers of the SN and AP; the channel gains from AP 
and SN to the relay node are h and g , which are assumed to be reciprocal; Rn is the additive 
white Gaussian noise at the relay node.  
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Since we adopt the PS protocol, the relay node assigns ρ portion to recharge its battery, and 
the other1 ρ− portion is used for energy and information relaying, where ( )0,1ρ ∈ is the PS 
factor. In practice, the SN harvests the energy transmitted from AP via the relay node. The 
energy signal experiences two times channel attenuations and a series of other losses, which 
results in S AP P<<  [27-30]. This phenomenon can be explained by equation (10). Thus, we 
ignore the harvested energy from SN and the noise. During the first phase, the harvested 
energy of the relay node can be given as 
 

                                 { }( ) ( )2 2/ 2 / 2R R AE y T P h Tξρ ξρ= E ≈ ,                                   (2) 

 
where {}E ⋅ represents the expectation operation; ( )0,1ξ ∈ is the energy conversion efficiency. 
The transmission power of the relay node can be calculated as 
 

2
R AP P hξρ= .                                                     (3) 

 
Then, the remaining1 ρ− portion signal can be given by 
 

                                    ( )' 1R A a S s Ry P hx P gx nρ= − + + .                                    (4) 
 

In the second phase of the time duration / 2T , the relay node broadcasts energy and 
information to the SN and AP. To use more energy for the information signal relaying, the 
relay cancels the energy signal ax from '

Ry by using SIC. In the case of imperfect cancelation, 
the post-cancellation signal at the relay can be expressed as 
 

                       ( )ˆ 1R A a S s Ry P hx P gx nρ ζ= − + + ,                                  (5) 
 

where ( ]0,1ζ ∈ is defined as the cancelation coefficient to characterize the level of imperfect 
cancelation. Therefore, the signal transmitted by the relay node can be given by 
 

                           ( )( )'1R S s A a R Rx P gx P hx n nβ ρ ζ= − + + + ,                           (6) 

 

where β denotes the normalized amplify factor; ( )' 2~ 0,R Rn CN σ is the additional processing 

noise. Since '
Rn dominates the antenna noise Rn , we ignore Rn for simplicity. The signal 

transmitted by the relay node can be re-represented as 
 

                     ( )( )'1 1R S s A a Rx P gx P hx nβ ρ ζ ρ= − + − + .                         (7) 

 
With the given expression in (5), the normalized amplify factor can be given by 
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( ) ( )

2

2 2 21 1
A

S A R

P h

P g P h

ξρ
β

ρ ρ ζ σ
=

− + − +
.                                  (8) 

Subsequently, Rx is amplified and forwarded to the AP. Thus, the received information signal 
of AP can be expressed as  
 

              ( )( )'1 1A S s A a R Ay h P gx P hx n nβ ρ ζ ρ= − + − + + ,                   (9) 

 

where ( )2~ 0,A An CN σ denotes the additive noise of AP. 

On the other hand, the received energy signal at SN can be given by S Ry gx= . Ignoring the 
additive noise at SN, the transmission power of SN can be calculated as 
 

              
{ }2 2

2 22

/ 2
R

S A

g x
P P h g

T

ξ
ξ ρ

E
= = .                                (10) 

 
Combining the equations (8), (9) and (10), the received signal-to-noise ratio (SNR) at AP is 
formulated as 
 

          

( ) ( )
( )

( )
( ) ( ) ( )( )

2 2

2 42 2

6 43 2 2

4 6 2 4 22 2 2 2 2

1
,

1

1

1 1 1

S
PS A

R A A

A

A R A A A R A

P h g
P

h P h

P h g

P h P h P h g P h

β ρ
g ρ

β σ βζ ρ σ

ξ ρ ρ

ξρ σ ξζρ ρ ρ ξ ρ ρ ζ σ σ

−
=

+ − +

−
=

+ − + − + − +

.                     

(11) 
 
As a result, the instantaneous information rate at AP with respect to ρ and AP is 
 

              ( ) ( )( )2
1, log 1 ,
2PS A PS AR P Pρ g ρ= + .                                 (12) 

 
The total transmission process of the PS relay protocol is divided into two equal durations, 

while the AP only transmits power AP during the first phase. Besides, part of the energy 
( )( )1 1 APρ ζ− − is canceled in the second phase. Note that the total power consumption of the 
relay node and the SN is supplied by the AP. Thus, the total power consumption of the 
considered network with PS protocol can be given by 
 

              ( )( ) ( )( )( )1 1 11 1 1 1
2 2 2

PS
total A c A A cP P P P P Pκ ζ ρ κ ρ ζ= + − − − = − − − + ,          (13) 

 
where κ is the inverse of power amplification efficiency; cP is the total circuit power 
consumption by digital to analog converter and frequency synthesizer. 
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2.2 Time Switching Protocol 

αT

AP
Energy

R Information
SNR

Energy
Information

RAP SN

(1-α)T/2  
Fig. 3. Bidirectional cooperative sensor networks with TS protocol. 

 
The TS protocol requires three phases to complete the entire transmission, which is shown in 
Fig. 3. During the first phase Tα , the energy signal with power AP is transmitted from the AP 
to the relay node, where ( )0,1α ∈ denotes the TS factor. Thus, the amount of harvested energy 
at the relay node can be given by 
 

              2
R AE P h Tξ α≈ .                                                     (14) 

 

In the second phase of duration ( )1 / 2Tα− , SN transmits its information sx to the relay. 
The received signal at the relay node can be expressed as 
 

              R S s Ry P gx n= + .                                                     (15) 
 

Using all the harvested energy RE , the relay sends the amplified signal Ryβ to the AP and 
the SN in the remaining phase, where the normalized amplify factor can be given by 
 

              
( )( )

2

2 2

2

1
A

S R

P h

P g

ξα
β

α σ
=

− +
.                                              (16) 

 
The received signal at the AP is 
 

              ( )A S s R Ay h P gx n nβ= + + .                                           (17) 
 

Hence, the harvested energy at the SN can be calculated as ( )2 2 1 / 2S RE g y Tξ β α = E −   

2 22
AP h g Tξ α= . And the transmission power of the SN can be given by 

 

              
( )

2 222
1 / 2 1

AS
S

P h gEP
ξ α

α α
= =

− −
.                                        (18) 

 
Combining the equations (16), (17) and (18), the received SNR at AP can be calculated as 
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    ( )
( )

( ) ( )( )

2 2 6 43 2 2

2 42 2 2

2 4 22 2 2 2

4
,

2 1

2 1 1

S A
TS A

R A A R

A R A

P h g P h g
P

h P h

P h g

β ξ α
g α

β σ σ ξα α σ

α ξ α α σ σ

= =
+ −

+ − + −

.      (19) 

 
As a result, the instantaneous information rate aboutα and AP is 
 

              ( ) ( )( )2
1, log 1 ,

2TS A TS AR P Pαα g α−
= + .                                   (20) 

 
The total transmission process of the TS relay protocol is divided into three phases, while 

the AP only transmits the power in the first phase duration Tα . And all the energy of the relay 
and SN are originated from AP. Therefore, the total power consumption can be given by 
 

              TS
total A cP P Pακ= + .                                                  (21) 

 

3. Formulation and Solution of Energy Efficiency Optimization 
In this section, the energy efficiency maximization optimizations subject to EH activation 
constraint and QoS requirement are formulated under the PS and TS protocol. Due to the 
transmission power and resource division factor are coupled to each other, we can not obtain 
the global optimal solutions directly. To cope with the non-convexity of the optimizations, the 
FAS algorithms are proposed. By using the fractional programming, the original objective 
function is converted into parameterized polynomial subtractive form. Then the transferred 
optimizations can be decomposed into two sub-problems. After proving that the optimization 
is a convex problem with the given resource division ratio or transmission power, the global 
solutions can be obtained by the alternative search method. 

3.1 Power Splitting Protocol 

3.1.1 Problem Formulation 
The definition of energy efficiency is the ratio of the information rate and the total power 
consumption, which is given by 
 

[ ]/ee
total

R bits Joule
P

η = .                                               (22) 

 
In the case of high SNR, the equation (11) can be approximated as 

 

( ) ( )
( ) ( ) ( )( )

6 43 2

4 6 2 4 22 2 2

1
,

1 1 1
A

PS A
R A A

P h g
P

h P h h g h

ξ ρ ρ
g ρ

ξρ σ ξζρ ρ ρ ξ ρ ρ ζ σ

−
≈

+ − + − + −
.  (23) 

 
Based on (22), the energy efficiency of PS relay protocol PS

eeη is formulated as 
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( ) ( )
( )

( )( )

( )( )( )

2
1 log 1 ,, 2, 1, 1 1

2

PS APS APS
ee A PS

total A A c

PR P
P

P P P P

g ρρ
η ρ

ρ κ ρ ζ

+
= =

− − − +
.                        (24) 

 
Considering the QoS requirement and EH activation constraint, the optimization of energy 
efficiency maximization can be given by 
 

{ }
( )

,

1

2

3 max
2

4
2 2

5

1:  max ,

    . .   
           0 1
           0

           

           

A

PS
ee AP

PS th

A

A

A

P P

s t C R R
C
C P P

C P h

C P h g

ρ
η ρ

ρ

θ

ξρ θ

>

< ≤
< ≤

>

>

,                                        (25) 

 
where thR is the minimum rate requirement; θ represents the activation sensitivity of EH 

receiver; maxP is the maximum power of the AP. Besides, 2
AP h and 2 2

AP h gξρ are the 
power arrived at the relay and SN. Obviously, both the objective function and constraint 1C are 
non-convex due to ρ and AP are coupled to each other, which results in the non-convexity of 
the optimization problem. 

3.1.2 The Proposed Iterative Algorithm for PS Protocol 
For the proposed FAS algorithm, we first transform the objective function into parametric 
programming, which can be solved by Dinkelbach’s method. Let *ϕ denotes the maximum 
energy efficiency of the considered system. Then we have that 
 

( )
( )

( )
( )

* *
*

* * ,

, ,
= max

,, A

PS A PS A
PSPS P total Atotal A

R P R P
P PP P ρ

ρ ρ
ϕ

ρρ
= ,                              (26) 

 
where *

AP and *ρ are the optimal transmission power and PS factor. Since *ϕ , *
AP and *ρ  are 

the optimal solutions, we have 
 

( )
( )

( )
( )

* *
*

* *

, ,
=

,,
PS A PS A

PSPS
total Atotal A

R P R P
P PP P

ρ ρ
ϕ

ρρ
≥ .                                  (27) 

 
After the mathematical operation, (27) can be rewritten as 
 

( ) ( )*, , 0PS
PS A total AR P P Pρ ϕ ρ− ≤ ,                                    (28) 
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( ) ( )* * * * *, , 0PS
PS A total AR P P Pρ ϕ ρ− = .                                (29) 

 
Therefore, the upper boundary of ( ) ( )*, ,PS

PS A total AR P P Pρ ϕ ρ− is equal to 0. In other words, the 

maximum energy efficiency *ϕ can be achieved only when the following equation is satisfied 
 

{ }
( ) ( ) ( ) ( )* * * * * *

,
max , , , , 0

A

PS PS
PS A total A PS A total AP

R P P P R P P P
ρ

ρ ϕ ρ ρ ϕ ρ− = − = .         (30) 

 
where 

{ }
( ) ( )

,
max , ,

A

PS
PS A total AP

R P P P
ρ

ρ ϕ ρ−                                   (31) 

is defined as the parametric program with parameterϕ . 
Remark 1: In fact, using Dinkelbach’s method can generate a strictly increasing 
sequence ( )iϕ that superlinearly converges to *ϕ with an initial value ( ) *0ϕ ϕ< . The 
convergence of fractional programming has been proved in [39, 40]. Hence, after finite 
iterations, the iterative process will terminate at 

( ) ( )( ) ( ) ( ) ( )( ), ,PS
PS A total AR P i i i P P i iρ ϕ ρ ω− < with the convergence tolerance 0ω > . Based 

on the above analysis, the algorithm of fractional programming is given in Algorithm 1, 
where I is the maximum number of iterations. 

 
Algorithm 1 Dinkelbach’s method to convert energy efficiency optimization 
1: Initialization: the iteration index 1i = , ( )iϕ , ω and I ;  
2: Input: the instantaneous channel state information h and g ;  
3: Do 

Solve the transferred optimization (31) with the given ( )iϕ , and obtain the 
sub-optimal solutions ( )AP i and ( )iρ ;  

4: Updated ( ) ( ) ( )( )
( ) ( )( )

,
1

,
PS A
PS

total A

R P i i
i

P P i i
ρ

ϕ
ρ

+ = and 1i i= + ; 

5: While ( ) ( )( ) ( ) ( ) ( )( ), ,PS
PS A total AR P i i i P P i iρ ϕ ρ ω− ≥ and i I<  

6: Return ( ) ( )( ) ( ) ( )( )* , / ,PS
PS A total AR P i i P P i iϕ ρ ρ= , ( )*

A AP P i=  and ( )* iρ ρ= .  

 
After applying the fractional programming, the optimization problem 1P can be re-expressed 

as 
 

{ }
( ) ( )

,

1 5

1 :  max , ,

    . . 
A

PS
PS A total AP

P a R P P P

s t C C
ρ

ρ ϕ ρ−

−

.                                (32) 

 
However, the optimization problem is still non-convex. We still cannot obtain the final 

solution by mathematical calculations directly. To solve this problem, we decompose 1P a into 
two sub-problems with fixed AP or ρ . 
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Proposition 1. With a given ρ , 1P a is a convex problem with respect to AP . When AP is given, 
1P a is also a convex problem with respect to ρ . 

Proof: See Appendix A. 
After proving the convexity of the decomposed two sub-problems, the local solutions can be 

obtained by convex programming. Then, the alternative search method can be used to obtain 
the global optimal solutions iteratively. The key idea of the alternative convex programming is 
that only one local solution of ρ or AP can be obtained in each iteration while the other is fixed, 
which is shown in Algorithm 2. The convergence tolerance and the maximum number of 
iterations are denoted byϖ and K . 

 
Algorithm 2 The proposed alternative power and resource division ratio 
algorithm to solve 1P a  
1: Initialization: the iteration index 1k = , ϖ , K , ( )AP k and ( )kρ ; 
2: Input: the givenϕ ; 
3: Do 

Solve (31) with a given ( )kρ by convex programming, obtain ( )1AP k + ;  

4: Calculate ( ) ( )( ) ( ) ( )( )1 , 1 ,PS
PS A total AR P k k P P k kρ ϕ ρ+ − + ; 

5: Solve (32) with a given ( )1AP k + by convex programming, obtain ( )1kρ + ; 

6: Calculate ( ) ( )( ) ( ) ( )( )1 , 1 1 , 1PS
PS A total AR P k k P P k kρ ϕ ρ+ + − + + ; 

7: While
( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 , 1 1 , 1

1 , 1 ,

PS
PS A total A

PS
PS A total A

R P k k P P k k

R P k k P P k k

ρ ϕ ρ
ϖ

ρ ϕ ρ

+ + − + +
>

− + − +
and k K<  

8: Return ( )* 1A AP P k= + and ( )* 1kρ ρ= + . 

Proposition 2. The local solutions can be obtained by convex programming. Then, the 
generated sequence ( ) ( )( ) ( ) ( )( )1 , 1 1 , 1PS

PS A total AR P k k P P k kρ ϕ ρ+ + − + + by the alternative 
search method converges monotonically.  
Proof: See Appendix B. 

3.2 Time Switching Protocol 

3.2.1 Problem Formulation 

In the case of high SNR, the energy efficiency TS
eeη can be formulated as 

 

( ) ( )
( )

( )( )
4 4

2 2 42 2

21 log 1
2 1,

,
,

A

R ATS ATS
ee A TS

A ctotal A

P h g

h gR P
P

P PP P

ξ αα

α σ ξ σα
η α

ακα

 
−  + − + 

 = =
+

.             (33) 

 
Thus, the energy efficiency maximization problem with consideration of the QoS requirement 
and EH activation constraint can be expressed as 
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3.2.2 The Proposed Iterative Algorithm for TS Protocol 
To solve the non-convexity of 2P , the fractional programming can be used to convert (33) into a 
parameterized subtractive form, which can be expressed as 
 

{ }
( ) ( )

,

1 5

2 :   max , ,

    . . 
A

TS
TS A total AP

P a R P P P

s t C C
α

α δ α−

−

,                           (35) 

 
where δ is the parameter of the fractional programming. It is obvious that 2P a is still a 
non-convex problem. Similar to the PS scheme, we decompose the optimization (36) into two 
sub-problems with respect to AP andα respectively.  
Proposition 2. With a givenα , 2P a is a convex problem with respect to AP . When AP is 
given, 2P a is also a convex problem with respect toα . 
Proof: See Appendix C. 

Then the alternative convex programming can be used to obtain global solutions. Changing 
the optimization parameters and objective function, the outer loop can be solved by Algorithm 1, 
and the inner loop can be solved by Algorithm 2. The convergence of the proposed algorithm 
with TS relay protocol is similar to the PS relay protocol. Thus, the proof is omitted here. 

3.3 Computational Complexity Analysis 
In this section, the computational complexity of the proposed algorithm is analyzed. The 
proposed algorithm is a nested structure with fractional programming, alternative search method 
and convex programming. The global solutions of transmission power and resource division 
ratio can be obtained by the proposed FAS algorithm with low computational complexity. 
Except for the convex programming part, the total number of iterations can be given by 

{ }min ,i k IKωϖ , where iω and kϖ denote the iterative numbers corresponding to the fractional 
programming and alternative search method when the stop conditionsω and ϖ  are reached. The 
final convex sub-problems can be solved by the fast gradient method [41]. Hence, the 
computational complexity of the fast gradient method with respect to transmission power and 

resource division ratio can be given by ( ) 1 1
1

1 1 1

11 min ln ,O ς ςψ
τ υ υ

   =   
   

and 

( ) 2 2
2

2 2 2

11 min ln ,O ς ς
ψ

τ υ υ
   =   
   

, where 1ς and 2ς are the Lipschitz constants; 1τ and 2τ are 
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the convexity parameters; 1υ and 2υ are the convergence tolerances, referring to [41]. Therefore, 
the overall computational complexity of the proposed algorithm can be given 
by { }{ }( )1 2min , +i k IKωϖ ψ ψ . 

4. Simulation Results 
In this section, we first prove the convergence and low complexity of the proposed iterative 
algorithm comparing with the exhaustive search method. Subsequently, we compare the 
proposed schemes with traditional schemes under different parameters to evaluate energy 
efficiency performance. For the proposed schemes, we assume that the distance between AP 
and SN are fixed at 3mASd = , and the relay can move within the line of AP and SN, where ASd , 

ARd and RSd denote the distance between AP to SN, AP to relay and relay to SN respectively. 

The channel gain 2h and 2g are set to ARd λ− and RSd λ−  [27], whereλ is the path-loss exponent. 
And the simulation parameters are presented in Table 1. 
 

Table 1. Simulation parameters 
Parameter Value 

Path-loss exponentλ  3 
Cancellation coefficientζ  0.001 

Energy conversion efficiencyξ  0.3 

Noise power density 2
Rσ , 2

Aσ  -10dBm/Hz 

Total static power consumption cP  
The inverse of power amplification efficiencyκ  

Maximum transmission power maxP  
Activation threshold of EH circuitθ  
The minimum rate requirement thR  

Convergence tolerance of iterative algorithmsω ,ϖ    

25mW 
1 

30dBm 
-10dBm 
1bps/Hz 

10-5 

 
For evaluating the output performance and the convergence behavior, the energy efficiency 

of the proposed PS and TS schemes are illustrated in Fig. 4 and Fig. 5 by contrast with the 
exhaustive search method. The distance between AP to relay ASd is set as 1.5m. The step-size 
of the exhaustive search accuracy is set as 510− , which is not strictly accurate but results in a 
great amount of calculation. Simultaneously, the global solutions calculated by the adjacent 
iterations are employed as the predefined convergence tolerance 5

1 2 0= = 1ω υ υϖ −== of the 
proposed algorithm for the fair comparison. As shown in Fig. 4 and Fig. 5, the proposed 
algorithm with PS protocol can achieve near-optimal energy efficiency about 21.4573bits/J. 
For TS protocol, the energy efficiency of the proposed algorithm is about 23.94bits/J. 
Comparing with the exhaustive search method, we can find that the proposed algorithm can 
achieve a very small output performance loss. On the other hand, we can also find that the 
proposed algorithm with PS and TS protocols converges within 7 iterations. This result 
reflects that the proposed algorithm has lower computational complexity than that of the 
exhaustive search method.   
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For the proposed algorithm and the exhaustive search method, Fig. 6 illustrates the 
achievable energy efficiency versus the distance between AP to relay ASd with different 
settings of circuit power consumption cP . From Fig. 6, there is about 0.003bits/J energy 
efficiency performance loss of the proposed algorithm. Especially, the energy efficiency of the 
proposed algorithm can achieve 33.62bits/J when =10mWcP and 1.5mASd = . With the 
increase of ASd from 1.2m to 1.8m, the achievable energy efficiency increases. Besides, it can 
also be noticed that less circuit power consumption of the networks leads to higher energy 
efficiency. 

For the TS protocol, the effects of the circuit power consumption and the distance between 
AP to relay on energy efficiency are illustrated in Fig. 7. Similar to PS protocol, the proposed 
algorithm can achieve similar output performance with the exhaustive search method. 
However, the proposed algorithm only requires a relatively lower complexity. The energy 
efficiency is increased with the improvement of ASd and the reduction of cP . Specifically, the 
proposed algorithm can achieve 22.3bits/J when =40mWcP and 1.8mASd = . 
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Fig. 4. Energy efficiency versus iteration numbers of PS protocol. 
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Fig. 5. Energy efficiency versus iteration numbers of TS protocol. 
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Fig. 6. Energy efficiency versus the distance between AP to relay of PS protocol. 
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Fig. 7. Energy efficiency versus the distance between AP to relay of TS protocol. 

 

In Fig. 8 and Fig. 9, we plot the energy efficiency under various resource division ratio with 
different transmission powers of AP 20dBm , 23dBm and 27dBm , respectively. It can be seen 
that these six curves have the maximum energy efficiency with different resource division 
ratio. The energy efficiency first increases and then decreases as the resource division ratio 
increases. Moreover, energy efficiency can achieve 21.983bits/J when 27dBmAP = and 

0.7ρ = . Besides, energy efficiency can achieve 23.45bits/J when 27dBmAP = and 
0.124α = . 
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Fig. 8. Energy efficiency versus different PS factor when 27dBmAP = , 23dBmAP = and 20dBmAP = . 
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Fig. 9. Energy efficiency versus different TS factor when 27dBmAP = , 23dBmAP = and 20dBmAP = . 
 

With the minimum rate requirement varying from 0bps/HzthR = to 3bps/HzthR = , Fig. 10 
shows the effect of the path-loss exponent when 2.5λ = , 3λ = and 4λ = . The circuit power 
consumption and the distance between AP to relay are fixed at =25mWcP and 1.5mASd = . As 
expected, the proposed PS scheme is declining about 20.79bits/J with the increasing path-loss 
exponent between 2.5λ = to 4λ = . With the increasing of thR , achievable energy efficiency is 
declining. The reason is that a larger thR may lead to smaller feasible domain of the 
optimization problem. When thR becomes large enough, the information rate of the proposed 
algorithm is even less than the minimum rate requirement, which is another reason for 
excessively low energy efficiency. 
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Fig. 10. Energy efficiency versus the minimum rate requirement of PS protocol. 

 
For the TS protocol, the effects of thR andλ on energy efficiency are shown in Fig. 11. We 

can see that the energy efficiency of the proposed schemes decline if we expect to achieve a 
larger value of the minimum rate requirement. The reason for this phenomenon is similar to 
Fig. 10. Additionally, the output performance is reduced by the bigger path-loss exponent. 
That is because the bigger path-loss exponent indicates the stronger the channel fading. The 
energy efficiency can only achieve 3.0961bits/J when 4λ = and bps z3 /HthR = . 
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Fig. 11. Energy efficiency versus the minimum rate requirement of TS protocol. 

 
In Fig. 12 and Fig. 13, we compare the proposed schemes with other conventional schemes 

and rate maximization scheme in [27] when the energy conversion efficiency varies from 0.1 
to 0.9. Therefore, the first compared schemes are the optimal resource division ratio schemes 
with the fixed transmission power of AP 0.8AP = and 0.5AP = . The second compared schemes 
are the optimal transmission with the fixed resource division ratio 0.3ρ = , 0.5ρ = , 

0.3α = and 0.5α = . Moreover, the third compared schemes are the rate maximization 
schemes with the optimal resource division ratio and the optimal transmission power [30]. 

As shown in Fig. 12 and Fig. 13, the proposed schemes with PS and TS protocols have the 
highest energy efficiency compared with the other three schemes. In particular, the energy 
efficiency of the proposed PS scheme can achieve 55.68 bits/J when 0.9ξ = . In Fig. 13, the 
energy efficiency of the proposed TS scheme can achieve 48.32bits/J when 0.5ξ = . 
Additionally, the optimization of resource division ratio and transmission power has an impact 
on energy efficiency. Moreover, the six energy efficiency curves are monotonously increasing 
as the energy conversion factor becomes larger. The reason is that the relay node and SN can 
harvest more energy for transmission. 
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Fig. 12. Energy efficiency of the proposed PS scheme versus other schemes. 
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Fig. 13. Energy efficiency of the proposed TS scheme versus other schemes. 

5. Conclusion 
For bidirectional EH cooperative sensor networks, we investigate the energy efficiency 
maximization optimizations under TS and PS protocol, which can achieve uplink information 
transmission from the SN to AP and the downlink energy transmission from the AP to SN. 
Especially for the PS protocol, the impact of imperfect SIC on the system is studied. 
Considering the minimum EH activation constraint and minimum rate requirement, the 
non-convex energy efficiency optimizations are formulated with respect to the resource 
division ratio and the transmission power of AP. To cope with this difficulty, we propose the 
FAS algorithm based on fractional programming and alternative convex programming. 
Simulation results are conducted to verify the better output performance and convergence of 
the proposed schemes. In future work, multiple AP and SN pairs will be studied. Moreover, we 
will investigate the security problem of the considered network and merge physical layer 
security technology to prevent the eavesdropping of confidential information. 

Appendix 

Proof of Proposition 1 
1P a (32) can be re-expressed as 
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where 6 43A h gξ= , 6B hξζ= , 2 42 2
AC h gσ ξ= , 22

AD hσ ζ= and 4 2
RE hξ σ=  . With 

the fixed ρ , the second-order derivation of ( ),PS APg ρ with respect to AP can be calculated as 
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We can see that ( )2 2, /PS A AR P Pρ∂ ∂ less zero, which means that ( ),PS AR P ρ with respect to AP  
is a convex function. With the given AP , the second-order derivation of ( ),PS APg ρ with 
respect to ρ can be calculated as 
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In (38), we can prove that the terms 3 23 13ρ ρ ρ− + − and 3 2ρ− are positive within ( )0,1ρ ∈ . 
Thus, ( ),PS APg ρ and ( ),PS AR P ρ with respect to AP and ρ are two convex functions 
respectively. Besides, other constraints in (36) are also convex. Thus, the decomposed two 
sub-problems are convex. 

Proof of Proposition 2 

In ( )1k + th iterations, the local solution of ( )+1AP k can be obtained with the given ( )kρ  by 

fast gradient method [41], while ( )AP k is only the feasible solution. Hence, we have 
 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 , 1 , , ,PS PS
PS A total A PS A total AR P k k P P k k R P k k P P k kρ ϕ ρ ρ ϕ ρ+ − + ≤ − .      

(39) 
 
Similarly, ( )1kρ + is the local optimal solution with the obtained ( )1AP k + , while ( )kρ is 
only a feasible solution. We can conclude that 
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Adding the equation (39) and equation (40), we can obtain that  
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After obtaining (41), it means that the sequence ( ) ( )( ) ( ) ( )( ), ,PS

PS A total AR P k k P P k kρ ϕ ρ− is 
monotonically decreasing and convergent. 
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Proof of Proposition 3 
For simplicity, 2P a (35) can be re-expressed as 
 

{ } ( ) ( )

( )

1
2, 1

1
2

1

1max log 1 ,
2 1

1. .   log 1
2 1

        2 4

A

TSA
total AP

A
th

A P P P
B

A Ps t R
B

C C

α

αα α
α

αα
α

 −
+ −  − 

 −
+ >  − 

−

.                           (42) 

 
where 4 4

1 2A h gξ= and 2 42 2
1 R AB h gσ ξ σ= + . With the fixedα or AP , the second-order 

derivation of ( ),TS AR P α with respect to AP andα can be calculated as 
 

( )
( )( )

2 2 2
1

2 2
1 1

, 1
2 ln 2 1

TS A

A A

R P A
P A P B

α αα

α α

∂ −
= −

∂ + −
.                         (43) 

( )
( ) ( )( )

2

2

2

22ln 2 1

,

1
TS A A

A B

R P α

α α αα
−

− + −
=

−

∂

∂
.                         (44) 

 
It can be seen that both (43) and (44) are negative. Therefore, ( ),TS AR P α is convex forα with 
fixed AP , and ( ),TS AR P α is also convex for AP with fixedα . Hence, the decomposed two 
sub-problems are two convex problems since the constraints in (42) are also convex.  
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