• Title/Summary/Keyword: Non-isothermal analysis

Search Result 114, Processing Time 0.025 seconds

Determination of the Overall Heat Transfer Coefficient for Non-isothermal Finite Element Analysis (비 등온 유한요소해석을 위한 접면열전달계수의 결정)

  • 강연식;양동열
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.72-77
    • /
    • 1997
  • In the temperature analysis of hot metal forming process, the heat transfer conditions between the work-piece and the tool have improtant influences upon the temperature distribution. The accuracy of thermal analysis depends on the proper description of boundary conditions including heat transfer. At the contact surface of two materials with different temperatures, this requires the knowledge of the overall heat transfer coefficient. In order to determine the overall heat transfer coefficient, a technique is developed. The technique involves temperature measurement by using thermocouples during hot upsetting operations and finite element computation. The overall heat transfer coefficient is determined using a non-linear optimization technique.

  • PDF

A Numerical Analysis on the Freeze Coating of a Non-Isothermal Flat Plate with a Binary Alloy (비등온 평판의 이성분 합금 냉각코팅에 관한 수치해석)

  • Nam, Jin-Hyeon;Kim, Chan-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1437-1446
    • /
    • 2000
  • A numerical analysis on the freeze coating process of a non-isothermal finite dimensional plate with a binary alloy is performed to investigate the growth and decay behavior of the solid and the mushy layer of the freeze coat and a complete procedure to calculate the process is obtained in this study. The continuously varying solid and mushy layers are immobilized by a coordinate transform and the resulting governing differential equations are solved by a finite difference technique. To account for the latent heat release and property change during solidification, proper phase change models are adopted. And the convection in the liquid melt is modeled as an appropriate heat transfer boundary condition at the liquid/mushy interface. The present results are compared with analytic solutions derived for the freeze coating of infinite dimensional plates and the discrepancy is found to be less than 0.5 percent in relative magnitude for all simulation cases. In addition the conservation of thermal energy is checked. The results show that the freeze coat grows proportional to the 1.2 square of axial position as predicted by analytic solutions ar first. But after the short period of initial growth, the growth rate of the freeze coat gradually decreases and finally the freeze coat starts to decay. The effects of various non-dimensional processing parameters on the behavior of freeze coat are also investigated.

Evaluation Method for Snap Cure Behavior of Non-conductive Paste for Flip Chip Bonding (플립칩 본딩용 비전도성 접착제의 속경화거동 평가기법)

  • Min, Kyung-Eun;Lee, Jun-Sik;Lee, So-Jeong;Yi, Sung;Kim, Jun-Ki
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.41-46
    • /
    • 2015
  • The snap cure NCP(non-conducive paste) adhesive material is essentially required for the high productivity flip chip bonding process. In this study, the accessibility of DEA(dielectric analysis) method for the evaluation of snap cure behavior was investigated with comparison to the isothermal DSC(differential scanning calorimetry) method. NCP adhesive was mainly formulated with epoxy resin and imidazole curing agent. Even though there were some noise in the dielectric loss factor curve measured by DEA, the cure start and completion points could be specified clearly through the data processing of cumulation and deviation method. Degree of cure by DEA method which was measured from the variation of the dielectric loss factor of adhesive material was corresponded to about 80% of the degree of cure by DSC method which was measured from the heat of curing reaction. Because the adhesive joint cured to the degree of 80% in the view point of chemical reaction reveals the sufficient mechanical strength, DEA method is expected to be used effectively in the estimation of the high speed curing behavior of snap cure type NCP adhesive material for flip chip bonding.

Non-isothermal TGA Analysis on Thermal Degradation Kinetics of Modified-NR Rubber Composites (비등온 TGA에 의한 개질NR고무복합재료지 열분해 Kinetics에 관한 해석)

  • Oh, Jeong-Seok;Lee, Joon-Mann;Ahn, Won-Sool
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.435-440
    • /
    • 2009
  • Thermal degradation behavior of CR (chloroprene) -modified NR (natural rubber) compounds, having different sulfur/accelerator compositions, was studied by non-isothermal TGA method. Data were analyzed using both Kissinger and Flynn-Wall-Ozawa analysis to assess the activation energies. Activation energy obtained from Kissinger analysis was $147.0{\pm}2.0$ kJ/mol for all samples, showing little effect of sulfur/accelerator composition changes in the samples. On the other hand, activation energy from Flynn-Wall-Ozawa analysis exhibited much variations with conversion, showing average value of $211.6{\pm}19.0$ kJ/mol. From the results, it was considered that whole thermal degradation processes of the samples were composed of complex multiple step processes, of which reaction mechanisms were different from each other.

A Finite Element Analysis of Deformation-Induced Heating in Tensile Testing of Sheet Metals (박판 인장 시험에서 가공열의 영향에 관한 유한요소 해석)

  • ;Wagoner, R.H.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.680-688
    • /
    • 1989
  • A numerical method for analyzing non-isothermal plastic deformation of sheet metals has been developed and sheet tensile tests have been analyzed using a two-dimensional finite element formulation. A modified Bishop`s method is used to solve the thermoplasticity problem in decoupled form at each time step. The accuracy of the analysis is confirmed by comparison with experimental data. The uniform elongation is found is drop by 0.1 to 2.7% at moderate strain rates, while total elongation decreases upto 6.0% during tensile testing in air compared to the isothermal case. The effect of deformation heating, becomes more pronounced as necking develops and at higher testing speed.

Finite Element Simulation of Hot forging of Special Purpose Large Crankshafts (대형 크랭크샤프트 단조 공정의 컴퓨터 시뮬레이션)

  • Park, J.H.;Lee, M.C.;Park, T.H.;Cho, B.J.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.297-300
    • /
    • 2008
  • In this paper, a simple and computationally efficient approach to non-isothermal three-dimensional analysis of hot forging processes is presented based on rigid-thermoviscoplastic finite element method. In the approach, the temperatures of dies are considered to be constant. Two hot forging processes of large crank shafts ranging from 800 to 1000 kg are simulated using the simple approach.

  • PDF

Different Types of Active Region EUV Bright Points by Hinode/EIS

  • Lee, Kyoung-Sun;Moon, Yong-Jae;Kim, Su-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.28.2-28.2
    • /
    • 2010
  • We have investigated seven Extreme-Ultraviolet (EUV) bright points in the active region (AR 10926) on 2006 December 2 by the EUV imaging spectrometer (EIS) onboard Hinode spacecraft. We determined their Doppler velocities and non-thermal velocities from 15 EUV spectral lines (log T=4.7-7.2) by fitting each line profile to a Gaussian function. We present the Doppler velocity map as a function of temperature which corresponds to a different height. As a result, these active region bright points show two different types of characteristics. Type 1 bright point shows a systematic increase of Doppler velocity from -68 km/s (blue shift) at log T=4.7 to 27 km/s (red shift) at log T=6.7, while type 2 bright points have Doppler velocities in the range of -20 km/s and 20 km/s. Using MDI magnetograms, we found that only type 1 bright point was associated with the canceling magnetic feature at the rate of $2.4{\times}10^{18}$ Mx/hour. When assuming that these bright points are caused by magnetic reconnection and the Doppler shift indicates reconnection out flow, the pattern of the Doppler shift implies that type 1 bright point should be related to low atmosphere magnetic reconnection. We also determined electron densities from line ratio as well as temperatures from emission measure loci using CHIANTI atomic database. The electron densities of all bright points are comparable to typical values of active regions (log Ne=9.9-10.4). For the temperature analysis, the emission loci plots indicate that these bright points should not be isothermal though background is isothermal. The DEM analysis also show that while the background has a single peak distribution (isothermal), the EUV bright points, double peak distributions.

  • PDF

Optimum shape and process design of single rotor equipment for its mixing performance using finite volume method

  • Kim, Nak-Soo;Lee, Jae-Yeol
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.4
    • /
    • pp.289-297
    • /
    • 2009
  • We numerically analyzed flow characteristics of the polymer melt in the screw equipment using a proper modeling and investigated design parameters which have influence on the mixing performance as the capability of the screw equipment. We considered the non-Newtonian and non-isothermal flow in a single rotor equipment to investigate the mixing performance with respect to screw dimensions as shape parameter of the single rotor equipment and screw speed as process parameter. We used Bird-Carreau-Yasuda model as a viscous model of the polymer melt and the particle tracking method to investigate the mixing performance in the screw equipment and considered four mixing performance indexes: residence time distribution, deformation rate, total strain and particle standard deviation as a new mixing performance index. We compared these indexes to determine design parameters and object function. On basis of the analysis results, we carried out the optimal design by using the response surface method and design of experiments. In conclusion, the differences of results between the optimal value and numerical analysis are about 5.0%.

A Study on the Molding Analysis of IC Package in Transfer mold (트랜스퍼 금형에 있어서 IC 폐키지의 성형 유동 해석에 관한 연구)

  • 구본권
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.64-67
    • /
    • 1995
  • Transfer Molding is currently the most widely used process for encapsulation integrated circuits(;IC). Although the process has been introduced over 20 years ago, generating billions of parts each year, it is far from being optimized. With each new mold, epoxy mold, epoxy mold compound, and lead-frame, lengthy period and expensive qualification runs have to be performed to minimized defects ranging from wire sweep, incomplete fill, and internal voids etc. This studies describes how simulation can be applied to transfer molding to yield acceptable design and processing parameter. The non-isothermal filling of non-newtonian reactive epoxy molding compound(;EMC) in a multi-cavity mold is analyzed. Sensitivity analysis is conducted to investigate the influence of process deviations on the final molded profile. This study trend is carried out by following some heuristic process guidelines.

  • PDF

Rigorous Dynamic Simulation of PTSA Process (PTSA 공정의 상세 동적 모사)

  • Lee, Hye-Jin;Ko, Dae-Ho;Moon, Il;Choi, Dae-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.309-309
    • /
    • 2000
  • The main objective of this study is to understand the regeneration step of the PTSA(Pressure and thermal swing adsorption) process below the atmospheric pressure by rigorous dynamic simulation. This target process is to recover toluene using activated carbon as an adsorbent. To do this, the dynamic simulations for the regeneration step are performed at 360, 490, 590mmHg and at high temperature after the simulation of the adsorption step at latm and 298K. A mathematical model was developed to simulate the column dynamics of the adsorption systems. This model is based on non-equilibrium, non-isothermal and non-adiabatic conditions, and axial dispersion and heat conduction are also considered. Heat transfer resistances are considered in gas-solid, gas-column wall and column wall-outside air. The LDF(Linear Driving Force) approximation model describes the mass transfer rate between the gas and solid phase. This study shows that the recovery of toluene by PTSA is more preferable than that by general TSA.

  • PDF