• 제목/요약/키워드: Non-intrusive

검색결과 126건 처리시간 0.025초

Vibration Analysis of Bladed Disk using Non-contact Blade Vibration System

  • Joung, Kyu-Kang;Han, Chak-Heui;Kang, Suk-Chul;Kim, Yeong-Ryeon
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.871-876
    • /
    • 2008
  • The blade vibration problem of bladed disk is the most critical subject to consider since it directly affects the stable performance of the engine as well as life of the engine. Especially, due to complicated vibration pattern of the bladed disk, more effort was required for vibration analysis and test. The research of measuring the vibration of the bladed disk, using NSMS(Non-intrusive stress measurement) instead of Aeromechanics testing method requiring slip ring or telemetry system with strain gauge, was successful. These testing can report the actual stresses seen on the blades; detect synchronous resonances that are the source of high cycle fatigue(HCF) in blades; measure individual blade mis-tuning and coupled resonances in bladed disks. In order to minimize the error being created due to heat expansion, the tip timing sensor is installed parallel to the blade trailing edge, yielding optimal result. Also, when working on finite element analysis, the whole bladed disk has gone through three-dimensional analysis, evaluating the family mode. The result of the analysis matched well with the test result.

  • PDF

지표유속법 기반 제주 산지형 하천 Kalesto 유량 정확도 향상 기법 (Enhancement Technique of Discharge Measurement Accuracy Using Kalesto Based on Index Velocity Method in Mountain Stream, Jeju Island)

  • 김동수;양성기;김수정;이준호
    • 한국환경과학회지
    • /
    • 제24권4호
    • /
    • pp.371-381
    • /
    • 2015
  • In the mountain streams in Jeju Island, strong turbulence and roughness usually made it nearly impossible to utilize most of intrusive instrumentation for streamflow discharge measurements. Instead, a non-intrusive fixed electro-magnetic wave surface velocimetry (fixed EWSV: Kalesto) became alternatively popular in many representative streams to measure stream discharge seamlessly. Currently, Kalesto has shown noteworthy performance with little loss in flood discharge measurements and also has successfully provided discharge for every minute. However, Kalesto has been operated to regard its measured one-point velocity as the representative mean velocity for the given cross-section. Therefore, it could be highly possible to potentially encompass discharge measurements errors. In this study, we analyzed the difference between such Kalesto discharge measurements and other alternative concurrent discharge measurements such as Acoustic Doppler Current Profiler (ADCP) and mobile EWSV which were able to measure velocity in multi-points in the cross-section. Consequently, Kalesto discharge deviated from ADCP discharge in amount of 48% for relatively low flow, and more than 20% difference for high flow compared with mobile EWSV discharge measurements. These results indicated that the one-point velocity measured by Kalesto should be used as a cross-sectional mean velocity, rather it should be accounted for as an index-velocity in conjunction with directly measured cross-sectional mean velocity by using more reliable instrumentations. After inducing Kalesto Discharge Correction Coefficient (KDCC) that actually means relationship between index velocity and cross-sectional mean velocity, the corrected discharge from Kalesto was significantly improved. Therefore, we found that index velocity method should be applied to obtain better accuracy of discharge measurement in case of Kalesto operation.

무구속적 방법으로 측정된 심전도의 신뢰도 판별 (Quality Level Classification of ECG Measured using Non-Constraint Approach)

  • 김윤재;허정;박광석;김성완
    • 대한의용생체공학회:의공학회지
    • /
    • 제37권5호
    • /
    • pp.161-167
    • /
    • 2016
  • Recent technological advances in sensor fabrication and bio-signal processing enabled non-constraint and non-intrusive measurement of human bio-signals. Especially, non-constraint measurement of ECG makes it available to estimate various human health parameters such as heart rate. Additionally, non-constraint ECG measurement of wheelchair user provides real-time health parameter information for emergency response. For accurate emergency response with low false alarm rate, it is necessary to discriminate quality levels of ECG measured using non-constraint approach. Health parameters acquired from low quality ECG results in inaccurate information. Thus, in this study, a machine learning based approach for three-class classification of ECG quality level is suggested. Three sensors are embedded in the back seat, chest belt, and handle of automatic wheelchair. For the two sensors embedded in back seat and chest belt, capacitively coupled electrodes were used. The accuracy of quality level classification was estimated using Monte Carlo cross validation. The proposed approach demonstrated accuracy of 94.01%, 95.57%, and 96.94% for each channel of three sensors. Furthermore, the implemented algorithm enables classification of user posture by detection of contacted electrodes. The accuracy for posture estimation was 94.57%. The proposed algorithm will contribute to non-constraint and robust estimation of health parameter of wheelchair users.

Application of DFB Diode Laser Sensor to Reacting Flow (I) - Estimation and Application to Laminar Flames -

  • Park, Gyung-Min;Masashi Katsuki;Kim, Duck-Jool
    • Journal of Mechanical Science and Technology
    • /
    • 제16권11호
    • /
    • pp.1550-1557
    • /
    • 2002
  • Diode laser sensor for measuring gas temperature and species concentration in combustion chamber was developed using 2.0 tim distributed feed back lasers. To evaluate the measurement sensitivity of diode laser sensor system, CO2 survey spectra near 2.0 Um were measured and compared with the calculated one. This diode laser absorption sensor was applied to measure gas temperatures in a premixed flat flame of CH$_4$-air mixture. Experimental results were in good agreement with the values by an R-type thermocouple within 6.12%. In addition, successful demonstration of measurement of gas temperature and species concentration in a soot flame showed the promising possibility of diode laser absorption sensors for practical combustion system with non-intrusive method.

A Study on the Development of Measurement Techniques for Thermal Flows in MEMS

  • Ko Han-Seo;Yang Sang-Sik;Yoo Jai-Suk;Kim Hyun-Jung
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권3호
    • /
    • pp.387-395
    • /
    • 2006
  • A review on advanced flow visualization techniques is presented particularly for applications to micro scale heat and mass transport measurements. Challenges, development and applications of micro scale visualization techniques are discussed for the study of heating/evaporating thin films, a heated micro channel, and a thermopneumatic micro pump. The developed methods are (1) Molecular Tagging Fluorescence Velocimetry (MTFV) using 10-nm caged seeding molecules (2) Micro Particle Velocimetry (MPIV) and (3) Ratiometric Laser Induced Fluorescence (LIF) for micro-resolution thermometry. These three methods are totally non-intrusive techniques and would be useful to investigate the temperature and flow characteristics in MEMS. Each of these techniques is discussed in three-fold: (1) its operating principle and operation, (2) its application and measurement results, and (3) its future challenges.

켑스트럼 기반의 후두암 감별을 위한 채널보상 (Channel Compensation for Cepstrum-Based Detection of Laryngeal Diseases)

  • 김영국;김수미;김형순;왕수건;조철우;양병곤
    • 대한음성학회지:말소리
    • /
    • 제50호
    • /
    • pp.111-122
    • /
    • 2004
  • Automatic detection of laryngeal diseases by voice is attractive because of its non-intrusive nature. Cepstrum based approach to detect laryngeal cancer shows reliable performance even when the periodicity of voice signals is severely lost, but it has a drawback that it is not robust to channel mismatch due to different microphone characteristics. In this paper, to deal with mismatched training and test microphone conditions, we investigate channel compensation techniques such as Cepstral Mean Subtraction (CMS) and Pole Filtered CMS (PFCMS). According to our experiments, PFCMS yields better performance than CMS. By using PFCMS, we obtained 12% and 40% error reduction over baseline and CMS, respectively.

  • PDF

Recovery Voltage Measurements of Oil-immersed Transformer

  • Li, Ming-Hua;Dong, Ming;Qu, Yan-Ming;Yan, Zhang
    • Transactions on Electrical and Electronic Materials
    • /
    • 제7권5호
    • /
    • pp.230-234
    • /
    • 2006
  • One of the methods currently being investigated as a possible non-intrusive diagnostic tool for condition monitoring of power transformer and cable is the recovery voltage measurement, which will be improving the ability to detect the content of water concentration and the ageing process in the insulation system and may thus be an indicator of insulation quality and its ageing status. The polarization phenomenon was studied using RVM with oil-paper samples. In order to interpret its mechanism, the Extended Debye model was introduced. With different circuit parameters, various simulation results were gotten. Furthermore, with the test samples of different ageing condition, measurements are accomplished in the lab. On the basis of this experiment as well as theoretical analysis, correlations between polarizations and ageing were analyzed.

측정각도를 고려한 액정교정기법의 개선 (Improvement of Calibration Method of Thermochromic Liquid Crystal Reflecting Measurement Angle)

  • 윤순현;심재경;우창수
    • 대한기계학회논문집B
    • /
    • 제24권2호
    • /
    • pp.188-194
    • /
    • 2000
  • Thermochromic liquid crystal reflect a unique color at even temperature. Therefore, they have been successfully applied to non-intrusive heat transfer research. Hue capturing method is widely used in the quantitative measurement from the TLC image. However it is affected by several measurement conditions. The distances of camera and light source have little influence on the color, but the value of hue is seriously affected by the measurement angle. In this study, the hue capturing method is improved by considering the effect of measurement angle. This improved calibration method can diminish the misreading of temperature caused by curvature of test surface.

AN INSTURMNETED SEINGLE TREE FOR DIRECT DRAFT MEASUREMENT OF ANIMAL DRAWIN IMPLEMENTS

  • Paskikatan, M.C.;Quick, G.R.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.307-315
    • /
    • 1993
  • A direct draft measurement system was developed based on the swingle tree- the rear component of the single-animal harnessing (or yoking) system . The prototype was made from a tube, on which four strain gages were attached. The pull of the draft animal through the flexible pull chains or ropes causes the beam to bend, The bending strain is sensed by the strain gages and the bridge converts this to a voltage signal. Counterweights keep the tube correctly oriented if the angle of pull changes , while end bearing follow the variations in the angle of pull. Hence, the voltage output is proportional to the draft. the device has highly linear response, acceptable sensitivity negligible error and hysteresis. It is suitable for electronic data acquisition, non-intrusive , easy to attach and detach and is reasonably priced.

  • PDF

IEC 코드 기반의 뉴로-퍼지모델을 이용한 유입변압기 고장진단 기법 (A Fault Diagnosis Method of Oil-Filled Power Transformers Using IEC Code based Neuro-Fuzzy Model)

  • 서명석;지평식
    • 전기학회논문지P
    • /
    • 제65권1호
    • /
    • pp.41-46
    • /
    • 2016
  • It has been proven that the dissolved gas analysis (DGA) is the most effective and convenient method to diagnose the transformers. The DGA is a simple, inexpensive, and non intrusive technique. Among the various diagnosis methods, IEC 60599 has been widely used in transformer in service. But this method cannot offer accurate diagnosis for all the faults. This paper proposes a fault diagnosis method of oil-filled power transformers using IEC code based neuro-fuzzy model. The proposed method proceeds two steps. First, IEC 60599 method is applied to diagnosis. If IEC code can't determine the fault type, neuro-fuzzy model is applied to effectively classify the fault type. To demonstrate the validity of the proposed method, experiment is performed and its results are illustrated.