• Title/Summary/Keyword: Non-homogeneous Poisson Process

Search Result 87, Processing Time 0.019 seconds

The Comparative Study based on Gompertz Software Reliability Model of Shape Parameter (곰페르츠형 형상모수에 근거한 소프트웨어 신뢰성모형에 대한 비교연구)

  • Shin, Hyun Cheul;Kim, Hee Cheul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.2
    • /
    • pp.29-36
    • /
    • 2014
  • Finite failure NHPP software reliability models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, proposes the Gompertz distribution reliability model, which made out efficiency application for software reliability. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on mean square error (MSE) and coefficient of determination$(R^2)$, for the sake of efficient model, was employed. Analysis of failure using real data set for the sake of proposing fixed shape parameter of the Gompertz distribution was employed. This analysis of failure data compared with the Gompertz distribution model of shape parameter. In order to insurance for the reliability of data, Laplace trend test was employed. In this study, the proposed Gompertz model is more efficient in terms of reliability in this area. Thus, Gompertz model can also be used as an alternative model. From this paper, software developers have to consider the growth model by prior knowledge of the software to identify failure modes which can was helped.

Analysis of Operational Availability under Changing Failure Rate and Supportability (무기체계의 고장률과 지원수준의 변화에 따른 운용가용도 변화 분석)

  • Tak, Jung Ho;Jung, Won
    • Journal of Applied Reliability
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • Purpose: Maintaining appropriate operational availability (Ao) is a key element of combat victory, but estimates vary according to estimation methods. The purpose of this study is to improve the accuracy of estimating operational availability by tracing the changes of the weapon system's failure rate, repair rate, and the level of logistic support. Methods: In order to track the change in the operating availability, the MDT (mean down time) is modeled by adding the repair time and the ALDT (administration and logistic delay time) to the service time. Results: Using the field data of the weapon system A operated by the ROKAF, the failure rate follows a non-homogeneous Poisson process that changes with time, and it is modeled considering the changing repair rate and the logistic support time. Conclusion: The accuracy of the analytical results was verified by comparing the actual operating data with the estimated availability. The results of this study can be used to track and evaluate the availability in a realistic situation where the failure rate and maintenance rate continuously change in operating environment.

The Comparative Study of Software Optimal Release Time of Finite NHPP Model Considering Log Linear Learning Factor (로그선형 학습요인을 이용한 유한고장 NHPP모형에 근거한 소프트웨어 최적방출시기 비교 연구)

  • Cheul, Kim Hee;Cheul, Shin Hyun
    • Convergence Security Journal
    • /
    • v.12 no.6
    • /
    • pp.3-10
    • /
    • 2012
  • In this paper, make a study decision problem called an optimal release policies after testing a software system in development phase and transfer it to the user. When correcting or modifying the software, finite failure non-homogeneous Poisson process model, considering learning factor, presented and propose release policies of the life distribution, log linear type model which used to an area of reliability because of various shape and scale parameter. In this paper, discuss optimal software release policies which minimize a total average software cost of development and maintenance under the constraint of satisfying a software reliability requirement. In a numerical example, the parameters estimation using maximum likelihood estimation of failure time data, make out estimating software optimal release time.

A Software Release Policy with Testing Time and the Number of Corrected Errors (시험시간과 오류수정개수를 고려한 소프트웨어 출시 시점결정)

  • Yoo, Young Kwan
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.7 no.4
    • /
    • pp.49-54
    • /
    • 2012
  • In this paper, a software policy considering testing time and the number of errors corrected is presented. The software is tested until a specified testing time or the time to a specified number of errors are corrected, whichever comes first. The model includes the cost of error correction and software testing during the testing time, and the cost of error correction during operation. It is assumed that the length of software life cycle has no bounds, and the error correction follows an non-homogeneous Poisson process. An expression for the total cost under the policy is derived. It is shown that the model includes the previous models as special cases.

  • PDF

A Determination of an Optimal Repair Number under Achieved Availability Constraint (성취가용도를 고려한 최적 수리횟수 결정모델에 관한 연구)

  • Na, In-Sung;Park, Myeong-Kyu
    • Journal of Applied Reliability
    • /
    • v.7 no.1
    • /
    • pp.13-22
    • /
    • 2007
  • A preventive maintenance model, caller FNBM (${\alpha},{\delta},{\gamma}$) model, is proposed to decide an optimal repair number under achieved availability requirements (r) along with taking two types of failures (repairable or irrepairable) into account. In this model, the current system is replaced by a new one in case when it doesn't meet the achieved availability requirement, even though it is repairable failure; Othewise it is replaced in time of the first irrepairable failure. Assumed that the j-th failure is repairable with probability ${\alpha}_j$ minimal repairs are allowed for repairable failure between replacements. Expected cost rate for preventive maintenance model is developed using NHPP (Non - Homogeneous Poisson Process) in order to de term in the optimal number $n^*$, also numerical examples are shown in order to explain the proposed model. Since the proposed FNBM (${\alpha},{\delta},{\gamma}$) model includes Park FNBM model (1979) and Nakagawa FNBM (p) model (1983) m this proposed model is thought to be better than previous model, especially for weapon system which requires availability as primary parameter.

  • PDF

Reliability Models for Application Software in Maintenance Phase

  • Chen, Yung-Chung;Tsai, Shih-Ying;Chen, Peter
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.1
    • /
    • pp.51-56
    • /
    • 2008
  • With growing demand for zero defects, predicting reliability of software systems is gaining importance. Software reliability models are used to estimate the reliability or the number of latent defects in a software product. Most reliability models to estimate the reliability of software in the literature are based on the development lifecycle stages. However, in the maintenance phase, the software needs to be corrected for errors and to be enhanced for the requests from users. These decrease the reliability of software. Software Reliability Growth Models (SRGMs) have been applied successfully to model software reliability in development phase. The software reliability in maintenance phase exhibits many types of systematic or irregular behaviors. These may include cyclic behavior as well as long-term evolutionary trends. The cyclic behavior may involve multiple periodicities and may be asymmetric in nature. In this paper, SGRM has been adapted to develop a reliability prediction model for the software in maintenance phase. The model is established using maintenance data from a commercial shop floor control system. The model is accepted to be used for resource planning and assuring the quality of the maintenance work to the user.

The software quality measurement based on software reliability model (소프트웨어 신뢰성 모델링 기반 소프트웨어 품질 측정)

  • Jung, Hye-Jung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.4
    • /
    • pp.45-50
    • /
    • 2019
  • This study proposes a method to measure software reliability according to software reliability measurement model to measure software reliability. The model presented in this study uses the distribution of Non - Homogeneous Poisson Process and presents a measure of the software reliability of the presented model. As a method to select a suitable software reliability growth model according to the presented model, we have studied a method of proposing an appropriate software reliability function by calculating the mean square error according to the estimated value of the reliability function according to the software failure data. In this study, we propose a reliability function to measure the software quality and suggest a method to select the software reliability function from the viewpoint of minimizing the error of the estimation value by applying the failure data.

The Comparative Software Development Cost Model Considering the Change in the Shape Parameter of the Erlang Distribution (어랑분포의 형상모수 변화에 따른 소프트웨어 개발 비용모형에 관한 비교 연구)

  • Yang, Tae-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.566-572
    • /
    • 2016
  • Software Reliability implemented in software development is one of the most important issues. In finite failure NHPP software reliability models for software failure analysis, the hazard function that means a failure rate may have constant independently for failure time, non-increasing or non-decreasing pattern. In this study, software development cost analysis considering the variable shape parameter of Erlang distribution as the failure life distribution in the software product testing process was studied. The software failure model was applied finite failure Non-Homogeneous Poisson Procedure and the parameters approximation using maximum likelihood estimation was accompanied. Thus, this paper was presented comparative analysis by applying a software failure time data to the software, considering the shape parameter of Erlang distribution for development cost model analysis. When compared to the cost curve in accordance with the shape parameter, the model of smaller shape can be seen that the optimal software release time delay and more cost. Through this study, it is thought that it can serve as a preliminary information which can basically help the software developers to search for development cost according to software shape parameters.

The Assessing Comparative Study for Statistical Process Control of Software Reliability Model Based on Musa-Okumo and Power-law Type (Musa-Okumoto와 Power-law형 NHPP 소프트웨어 신뢰모형에 관한 통계적 공정관리 접근방법 비교연구)

  • Kim, Hee-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.6
    • /
    • pp.483-490
    • /
    • 2015
  • There are many software reliability models that are based on the times of occurrences of errors in the debugging of software. It is shown that it is possible to do likelihood inference for software reliability models based on finite failure model and non-homogeneous Poisson Processes (NHPP). For someone making a decision about when to market software, the conditional failure rate is an important variables. The infinite failure model are used in a wide variety of practical situations. Their use in characterization problems, detection of outlier, linear estimation, study of system reliability, life-testing, survival analysis, data compression and many other fields can be seen from the many study. Statistical process control (SPC) can monitor the forecasting of software failure and thereby contribute significantly to the improvement of software reliability. Control charts are widely used for software process control in the software industry. In this paper, proposed a control mechanism based on NHPP using mean value function of Musa-Okumo and Power law type property.

Performance of Opportunistic Incremental NOMA Relay System in Fading Channels (페이딩 채널에서 기회전송 증가 NOMA 릴레이 시스템의 성능분석)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.69-76
    • /
    • 2016
  • In this paper, we investigate the system performance of a cooperative relaying system of Non-orthogonal multiple access (NOMA) with successive interference cancellation (SIC), which is considered promising application in fifth generation (5G) cellular networks. Previous studies have focused on the selected relays, however we include the maxmin relay selection and derive analytical outage probability of opportunistic incremental relaying systems. For the realistic mobile environment, the distributions of relays are modeled as a homogeneous Poisson point process (PPP). And maximal ratio combining (MRC) is adapted to improve the system performance at the destination node. Analytical results demonstrate the outage probability improves with the near/far user power ratio, and the cooperative relaying scheme can achieve low outage probability in comparison to the no relaying scheme. It is also conformed that the increase of the intensity of PPP cause higher gains of the spacial diversity and hence the performance improves.