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Abstract. With growing demand for zero defects, predicting reliability of software systems is gaining importance. 
Software reliability models are used to estimate the reliability or the number of latent defects in a software 
product. Most reliability models to estimate the reliability of software in the literature are based on the 
development lifecycle stages. However, in the maintenance phase, the software needs to be corrected for errors 
and to be enhanced for the requests from users. These decrease the reliability of software. Software Reliability 
Growth Models (SRGMs) have been applied successfully to model software reliability in development phase. 
The software reliability in maintenance phase exhibits many types of systematic or irregular behaviors. These 
may include cyclic behavior as well as long-term evolutionary trends. The cyclic behavior may involve 
multiple periodicities and may be asymmetric in nature. In this paper, SGRM has been adapted to develop a 
reliability prediction model for the software in maintenance phase. The model is established using maintenance 
data from a commercial shop floor control system. The model is accepted to be used for resource planning and 
assuring the quality of the maintenance work to the user. 
 
Keywords: Software reliability, Maintenance phase, Reliability growth model, Non homogeneous Poisson 

process. 
 
 

1.  INTRODUCTION 

No piece of software is free of faults. As software 
is written by humans, errors are inevitable. Due to a 
wrong or incomplete specification, large problem com-
plexity, lack of time, and other factors, mistakes are 
made; when this happens during developing software, it 
is known as an “error”. The result of a human error be-
ing made is a software “fault”, i.e. an incorrect piece of 
software. The software fault is usually called a software 
“bug”. When the faulty software is executed, it can ex-
hibit an unexpected behavior and produce an incorrect 
result. A software “failure” thus occurs.  

Software reliability is one of the most important char-
acteristics of software quality. It is defined as the probabil-
ity of failure-free software operation in a specified envi-

ronment for a specified period of time (Michael, 1996). 
Its measurement and management technologies during the 
software life-cycle are essential to produce and maintain 
quality/reliable software systems. 

The software life cycle can be divided into two dis-
tinct phases (Moriguchi 1996): a) the initial develop-
ment of software; and b) the maintenance of the soft-
ware. Large and long term software applications will 
have frequent requirement changes in maintenance. The 
requirement changes are caused mainly by government 
regulations, market competitors, and changes in agree-
ment between stakeholders, business environment and 
regulations in partner companies. In maintenance envi-
ronment, new requirements are added to release, or ex-
isting requirements are deleted or modified. This will 
affect the reliability and quality of the software. 
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Software reliability models are used to estimate the re-
liability or the number of latent defects in a software prod-
uct. However, there are large software systems which are 
maintained by the system users themselves. Such systems 
have been used for a considerably long period of time. The 
various details concerning the development stages are usu-
ally not known to the users who are responsible for the 
maintenance of these systems. In such a situation, the reli-
ability models available for the development phase cannot 
be applied to the maintenance phase. Nevertheless, the 
defects predicting in the maintenance for such systems is of 
crucial importance so as to provide confidence to the sys-
tem user and also for resource planning. 

 
Notations 
N(t) cumulative number of software faults (or the 

cumulative number of observed software fail-
ures) detected in the time-interval (0; t) 

H(t) mean value function which indicates the ex-
pectation of N(t), i.e. the expected cumulative 
number of faults detected (or the expected cu-
mulative number of software failures occur-
red) in the time-interval (0; t), H(t) = E [N (t)].

λ(t) failure intensity function which indicates the 
instantaneous fault-detection rate at time t, λ(t) 
= H ' (t ). 

R(x|t) software reliability, the probability that a soft-
ware failure does not occur in the time-inter-
val (t ; t + x](x ≧0) 

a initial number of faults present in the software 
prior to testing 

am initial number of faults present in the software 
prior to operation 

b parameter representing the fault-detection rate 
in development phase 

bm parameter representing the fault-detection rate 
in maintenance phase 

n(t) the expected number of faults remaining in the 
system at time t 

 
During the past two decades, a range of probabilistic 

models to predict the occurrence time of defects in a sys-
tem have been applied successfully to model software 
reliability in development phase (Musa, 1998). These are 
known as Software Reliability Growth models (SRGM’s) 
and they have focused almost exclusively on defect data 
from the system development phase. The software reli-
ability in maintenance phase exhibits many types of sys-
tematic or irregular behaviors. These may include cyclic 
behavior as well as long-term evolutionary trends. The 
cyclic behavior may involve multiple periodicities and 
may be asymmetric in nature.  

This paper examines the application of a particular 
class of models, known as non homogeneous Poisson 
process, to predict reliability and defect occurrence of a 
commercial Shop Floor Control system (SFC). Based on 
the assumptions and constraints of the models and the 
maintenance circumstances, a NHPP model is proposed. 
This model is accepted by the users and has been used for 
resource planning and assuring the quality of the mainte-
nance work to the user. 

2.  NHPP MODEL 

Numerous probabilistic models are available in soft-
ware reliability engineering to predict the occurrence time 
of defects in a system. Software Reliability Growth Mo-
del (SRGM) represents the relationship between the time 
span of software testing and the number of detected errors 
as a process of growth in software reliability. This rela-
tionship could be described by a counting process.  

The SRGM based on non homogeneous Poisson 
process (NHPP) is most commonly used. Among these 
models, Goel and Okumoto considered an NHPP as the 
stochastic process to describe the fault process (Okumoto 
et al., 1980), it is known as G-O model. Yamada et al., 
(1983, 1985, 1986, 1993) mo-dified the G-O model and 
incorporated the concept of testing-effort in an NHPP 
model to get a better description of the software fault 
phenomenon.  

The general NHPP model is based on the following 
assumptions:  
1.  The expected number of failures observed by time t 

follows a Poisson distribution with a bounded and 
non-decreasing mean value function H(t).  

2.  The number of software failures that occur in (t, t+ 
Δt) is proportional to the number of remaining faults 
in the software, a-H(t). 

3.  The fault removal process when failures are detected 
is instantaneous and perfect. 
In the NHPP models, a non homogeneous Poisson 

process (NHPP) is assumed for the random variable N(t), 
the cumulative number of observed software failures at 
time t. The time-dependent failure rate is proposed to 
follow an exponential distribution. The model is given by: 
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!
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N t n H t

n
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In the model, Pr{A} means the probability of event A. 
H(t) is a mean value function indicating the expectation 
of N(t), i.e., the expected cumulative number of software 
failures occurred in the time-interval (0; t). λ(t) in Eq. (1) 
is called a intensity function which indicates the instanta-
neous fault-occurring rate at time t. a is the initial number 
of faults presented in the software prior to testing; and b is 
the parameter representing the fault-detection rate. 

Several extrapolations of the NHPP model exist in-
corporating different assumptions. Musa’s basic model 
(Musa et al., 1987), the G-O model, the delayed S-shaped 
model (Yamada et al., 1983), the Gompertz model (Ke-
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cecioglu, 1991), and the Yamada Exponential model 
(Yamada et al., 1986) are all based on an NHPP. Table 1 
shows the typical NHPP models. 

3.  MODELS FOR MAINTENANCE PHASE 

In 1989, Yamada et al. (1989 [1]) proposed the reli-
ability assessment method for software products in the 
maintenance phase based on the empirical knowledge. 
They supposed that the software fault detection process in 
the maintenance phase followed an NHPP with a mean 
value function ))(( τ>− ttZa o , where oZ denotes the 
expected number of remaining faults in the maintenance 
phase.  

In the other papers by Yamada et al. (1989 [2], 1991), 
they describe the fault detection process in the mainte-
nance phase which is completely different from the sto-
chastic process in the testing phase. They assumed that 
the probabilistic law in the maintenance phase was differ-
ent from that in the testing phase. 

Okamura et al. (2001) propose an accelerated life 
testing model for reliability assessment of software prod-
ucts in maintenance phase. In their papers, they described 
the difference of the software failure-occurrence phenom-
ena between the maintenance and the testing phases based 
on the idea of the accelerated life testing model in hard-
ware products. 

4.  PRESENTED MODEL FOR MAINTENA-
NCE PHASE 

In this paper, the NHPP model is used to predict the 
reliability of software system in maintenance phase from 

the view of users.  
In the research conducted by Yamada et al. (1989 [2], 

1991) and Okamura et al. (2001), an environmental coef-
ficient k is introduced, which represents the differences 
between the environment in the testing phase (effort, test 
method, and so on) and the software maintenance envi-
ronment, such as the frequency of use. 

However, in most situations, the software systems 
are maintained by the system users themselves, and such 
systems may have been used for a considerably long pe-
riod of time. Various details concerning the development 
stages are usually not known to the users who are respon-
sible for the maintenance of these systems. In such a 
situation, the statistical information collected in the test-
ing phase is not available to estimate the fault detection 
process in the maintenance phase. 

In the presented model for maintenance environment 
is based on the following assumptions:  
a: The software failure-occurrence phenomenon in main-

tenance phase can be described by an exponential SRGM.  
b: The statistical information collected in the testing phase 

is not available to estimate the fault detection process 
in the maintenance phase.  

c: A parameter bm represents the fault detection rate per 
unit time in maintenance phase, regardless of the dif-
ferent environment between testing and maintenance 
phases.  

 
Because an NHPP model is characterized by its 

mean value function, the proposed model is described by 
the mean value function defined in the following.  
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Table 1. Typical NHPP models 

NHPP Model Mean value function H(t) Fault intensity function Remark 

Exponential 
SRGM 

( )bteatH −−= 1)(  
)0,0( >> ba  

btabet −=)(λ  
Failure-occurrence with a constant 
fault-detection rate at an arbitrary 
time. 

Delayed S-
shaped SRGM 

])1(1[)( btebtatH −+−=  
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Fault-detection process is descry-
bed by successive two phenom-
ena, failure-detection and faultis-
olation process. 

Inflection S-
shaped SRGM )1(
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Failure-occurrence with mutual 
dependency of detected faults 

SRGM : Software Reliability Growth Model 
a:  initial number of faults presented in the software prior to testing 
b:  parameter representing the fault-detection rate in development phase 
c:  parameter of inflection-rate of detected fault 
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In the two equations above, am is the expected number of 
initial inherent faults before operation, bm is the software 
failure occurrence rate per inherent fault in maintenance 
phase.  

The expected number of faults remaining at the sys-
tem testing time t which is obtained by taking expectation 
of random variable {N(∞)- N(t)} is  

 
)()]()([)( tHatNNEtn m −=−∞=  (6) 

 
Given that the software operation has been going on 

up to time t, the software reliability in the time-interval (t; 
t + x] (x ≧ 0) is expressed as:  
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In the equation above, t is the total operating time of the 
last failure and x is the operating time measured from the 
last failure. 

Moreover, the instantaneous mean time between 
software failures (instantaneous MTBF) is a useful meas-
ure for the frequency of software failure occurrence, and 
is given by:  
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t
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5.  METHOD FOR PARAMETER ESTIMA-
TION 

Suppose that k data pairs (tk, yk), (k = 1, 2, ⋯, n) are 
observed during the system maintenance phase, where the 
total number of software failures observed in the time 
interval (0, tk] is yk (k = 1, 2, ⋯, n). The logarithmic like-
lihood function of the NHPP model with mean value 
function H(t) of Eq. (4) is 
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where, ( )tb
m

meatH −−= 1)(  

The log likelihood in the case of the logarithmic 
likelihood function of the proposed model for mainte-
nance phase with mean value function H(t) of Eq. (4) can 
be written as:  
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Maximizing Eq. (9) with respect to am and bm, we 

have  
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The point estimates of am and bm can be solved by 

using numerical methods such as Newton-Raphson 
method. 

6.  NUMERICAL EXAMPLE 

A numerical example is used to illustrate the applica-
tion of the proposed software reliability growth model for 
maintenance environment.  

6.1 Analytic steps of model evaluation 

In the process of model evaluation, it is necessary to 
build a series of steps. These steps can systematically 
analyze collected fault. The related steps and description 
are as follows: 

 
1. Collect and analyze the fault data in a fixed period 

of time. 
2. Selecting suitable software reliability model. In 

this paper, exponential SRGM is assumed. 
3. Eq. (11) and Eq. (12) are used to determine model 

parameter am and parameter bm.  
4. Computing the mean value of faults experienced 

by using Eq. (4). 
5. Suitability of model is examined by means of a 

Kolmogorov-Smirnov test. 

6.2 Explanation of data 

Figure1 shows the fault-detection count data which 
is obtained from real tracking database records of a shop 
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floor control system (SFC) utilized in an electronics fac-
tory. 

733 faults were detected in the first 701 days after 
system operation began. We randomly chose two different 
subsets of fault-detection count data, subset I and subset 
II from the data.  

161 faults were detected in the subset I within 90 
days (146th day to 235th day after operation), and 139 fur-
ther faults were detected in the subset II within another 
108 days (326th day to 433th day after operation). 

6.3 Analysis of numerical example 

The model parameters of each subset have been esti-
mated by solving the likelihood equations given in Eq. (9): 

Subset I: 1ˆma = 242.03, 1
ˆ
mb = 0.012 

Subset II: 2ˆma = 189.46, 2
ˆ
mb = 0.012 

The same value of 1
ˆ
mb  and 2

ˆ
mb  indicateds that the 

fault-detection rate in these two subsets of fault-detection 
count data is similar. It is because there is no apparent 

difference in the organization, environment and personnel 
factors between these two subsets of fault-detection count 
data. 

The mean value function 1Ĥ  and 2Ĥ  can be esti-
mated respectively as:  
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Figure 2 shows the estimated mean value function 

1Ĥ  and 2Ĥ  respectively and the corresponding 90% 
upper and lower confidence limits. The estimated remain-
ing software faults are shown in Figure 3. 

The results from this investigation show that such a 
model for software maintenance data are promising. 
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Figure 1. Fault-detection count data of a Shop Floor Control system 
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(a) Subset I (161 faults within 90 days) (b) Subset II (139 faults within 108 days) 

Figure 2. Estimated mean value functions and the corresponding 90% upper and lower confidence limits  
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7.  DISCUSSION AND CONCLUSION 

In this paper, a software reliability growth model 
based on an NHPP model have been proposed, in which 
the exponential software reliability growth model is in-
corporated, and the methods of quantitative reliability 
evaluation based on this model have been discussed. Nu-
merical examples based on real data are also presented. 
However, there are several notorious points in this model. 
The assumption that a stable maintenance environment 
and perfect debugging in applying this model is unrealis-
tic in many actual maintenance processes. Other environ-
ment factors exist. For example a time variant test effort 
should be considered for overcoming this deficiency. Fur-
thermore, the analysis of the proposed model under im-
perfect debugging environment should be investigated. 
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(a) Subset I (161 faults within 90 days) (b) Subset II (139 faults within 108 days) 

Figure 3. Estimated remaining software faults 


