
IEMS Vol. 7, No. 1, pp. 51-56, June 2008.

Reliability Models for Application Software in
Maintenance Phase

Yung-Chung Chen†
Department of Logistics Management, Shu-Te University 59,

Hun Shang Rd, Hun Shang Village, Yen Chao, Kaohsiung County, 82442, TAIWAN
Tel: +886-7-615-8000 ext 4513, Email: yjchen@mail.stu.edu.tw

Shih-Ying Tsai

Department of Logistics Management, Shu-Te University 59,
Hun Shang Rd, Hun Shang Village, Yen Chao, Kaohsiung County, 82442, TAIWAN

Tel: +886-7-615-8000 ext 4513

Peter Chen
Berlin Company Limited

43 Ta-Yeh South Road, Kaohsiung, 81261, Taiwan
Tel: +886-7-871-1101 ext 1300, Email: berlin.pc@gmail.com

Selected paper from APIEMS20057

Abstract. With growing demand for zero defects, predicting reliability of software systems is gaining importance.
Software reliability models are used to estimate the reliability or the number of latent defects in a software
product. Most reliability models to estimate the reliability of software in the literature are based on the
development lifecycle stages. However, in the maintenance phase, the software needs to be corrected for errors
and to be enhanced for the requests from users. These decrease the reliability of software. Software Reliability
Growth Models (SRGMs) have been applied successfully to model software reliability in development phase.
The software reliability in maintenance phase exhibits many types of systematic or irregular behaviors. These
may include cyclic behavior as well as long-term evolutionary trends. The cyclic behavior may involve
multiple periodicities and may be asymmetric in nature. In this paper, SGRM has been adapted to develop a
reliability prediction model for the software in maintenance phase. The model is established using maintenance
data from a commercial shop floor control system. The model is accepted to be used for resource planning and
assuring the quality of the maintenance work to the user.

Keywords: Software reliability, Maintenance phase, Reliability growth model, Non homogeneous Poisson

process.

1. INTRODUCTION

No piece of software is free of faults. As software
is written by humans, errors are inevitable. Due to a
wrong or incomplete specification, large problem com-
plexity, lack of time, and other factors, mistakes are
made; when this happens during developing software, it
is known as an “error”. The result of a human error be-
ing made is a software “fault”, i.e. an incorrect piece of
software. The software fault is usually called a software
“bug”. When the faulty software is executed, it can ex-
hibit an unexpected behavior and produce an incorrect
result. A software “failure” thus occurs.

Software reliability is one of the most important char-
acteristics of software quality. It is defined as the probabil-
ity of failure-free software operation in a specified envi-

ronment for a specified period of time (Michael, 1996).
Its measurement and management technologies during the
software life-cycle are essential to produce and maintain
quality/reliable software systems.

The software life cycle can be divided into two dis-
tinct phases (Moriguchi 1996): a) the initial develop-
ment of software; and b) the maintenance of the soft-
ware. Large and long term software applications will
have frequent requirement changes in maintenance. The
requirement changes are caused mainly by government
regulations, market competitors, and changes in agree-
ment between stakeholders, business environment and
regulations in partner companies. In maintenance envi-
ronment, new requirements are added to release, or ex-
isting requirements are deleted or modified. This will
affect the reliability and quality of the software.

† : Corresponding Author

52 Yung-Chung Chen ᆞShih-Ying Tsai ᆞPeter Chen

Software reliability models are used to estimate the re-
liability or the number of latent defects in a software prod-
uct. However, there are large software systems which are
maintained by the system users themselves. Such systems
have been used for a considerably long period of time. The
various details concerning the development stages are usu-
ally not known to the users who are responsible for the
maintenance of these systems. In such a situation, the reli-
ability models available for the development phase cannot
be applied to the maintenance phase. Nevertheless, the
defects predicting in the maintenance for such systems is of
crucial importance so as to provide confidence to the sys-
tem user and also for resource planning.

Notations
N(t) cumulative number of software faults (or the

cumulative number of observed software fail-
ures) detected in the time-interval (0; t)

H(t) mean value function which indicates the ex-
pectation of N(t), i.e. the expected cumulative
number of faults detected (or the expected cu-
mulative number of software failures occur-
red) in the time-interval (0; t), H(t) = E [N (t)].

λ(t) failure intensity function which indicates the
instantaneous fault-detection rate at time t, λ(t)
= H ' (t).

R(x|t) software reliability, the probability that a soft-
ware failure does not occur in the time-inter-
val (t ; t + x](x ≧0)

a initial number of faults present in the software
prior to testing

am initial number of faults present in the software
prior to operation

b parameter representing the fault-detection rate
in development phase

bm parameter representing the fault-detection rate
in maintenance phase

n(t) the expected number of faults remaining in the
system at time t

During the past two decades, a range of probabilistic

models to predict the occurrence time of defects in a sys-
tem have been applied successfully to model software
reliability in development phase (Musa, 1998). These are
known as Software Reliability Growth models (SRGM’s)
and they have focused almost exclusively on defect data
from the system development phase. The software reli-
ability in maintenance phase exhibits many types of sys-
tematic or irregular behaviors. These may include cyclic
behavior as well as long-term evolutionary trends. The
cyclic behavior may involve multiple periodicities and
may be asymmetric in nature.

This paper examines the application of a particular
class of models, known as non homogeneous Poisson
process, to predict reliability and defect occurrence of a
commercial Shop Floor Control system (SFC). Based on
the assumptions and constraints of the models and the
maintenance circumstances, a NHPP model is proposed.
This model is accepted by the users and has been used for
resource planning and assuring the quality of the mainte-
nance work to the user.

2. NHPP MODEL

Numerous probabilistic models are available in soft-
ware reliability engineering to predict the occurrence time
of defects in a system. Software Reliability Growth Mo-
del (SRGM) represents the relationship between the time
span of software testing and the number of detected errors
as a process of growth in software reliability. This rela-
tionship could be described by a counting process.

The SRGM based on non homogeneous Poisson
process (NHPP) is most commonly used. Among these
models, Goel and Okumoto considered an NHPP as the
stochastic process to describe the fault process (Okumoto
et al., 1980), it is known as G-O model. Yamada et al.,
(1983, 1985, 1986, 1993) mo-dified the G-O model and
incorporated the concept of testing-effort in an NHPP
model to get a better description of the software fault
phenomenon.

The general NHPP model is based on the following
assumptions:
1. The expected number of failures observed by time t

follows a Poisson distribution with a bounded and
non-decreasing mean value function H(t).

2. The number of software failures that occur in (t, t+
Δt) is proportional to the number of remaining faults
in the software, a-H(t).

3. The fault removal process when failures are detected
is instantaneous and perfect.
In the NHPP models, a non homogeneous Poisson

process (NHPP) is assumed for the random variable N(t),
the cumulative number of observed software failures at
time t. The time-dependent failure rate is proposed to
follow an exponential distribution. The model is given by:

{ } [] { }()
Pr () exp ()

!

nH t
N t n H t

n
= = − (1)

0, 1, 2, ,n n=

, where

())exp(1)(btatH −−= (2)

, and

)exp(/)()(btabdttdHt −=≡λ (3)

In the model, Pr{A} means the probability of event A.
H(t) is a mean value function indicating the expectation
of N(t), i.e., the expected cumulative number of software
failures occurred in the time-interval (0; t). λ(t) in Eq. (1)
is called a intensity function which indicates the instanta-
neous fault-occurring rate at time t. a is the initial number
of faults presented in the software prior to testing; and b is
the parameter representing the fault-detection rate.

Several extrapolations of the NHPP model exist in-
corporating different assumptions. Musa’s basic model
(Musa et al., 1987), the G-O model, the delayed S-shaped
model (Yamada et al., 1983), the Gompertz model (Ke-

 Reliability Models for Application Software in Maintenance Phase 53

cecioglu, 1991), and the Yamada Exponential model
(Yamada et al., 1986) are all based on an NHPP. Table 1
shows the typical NHPP models.

3. MODELS FOR MAINTENANCE PHASE

In 1989, Yamada et al. (1989 [1]) proposed the reli-
ability assessment method for software products in the
maintenance phase based on the empirical knowledge.
They supposed that the software fault detection process in
the maintenance phase followed an NHPP with a mean
value function))((τ>− ttZa o , where oZ denotes the
expected number of remaining faults in the maintenance
phase.

In the other papers by Yamada et al. (1989 [2], 1991),
they describe the fault detection process in the mainte-
nance phase which is completely different from the sto-
chastic process in the testing phase. They assumed that
the probabilistic law in the maintenance phase was differ-
ent from that in the testing phase.

Okamura et al. (2001) propose an accelerated life
testing model for reliability assessment of software prod-
ucts in maintenance phase. In their papers, they described
the difference of the software failure-occurrence phenom-
ena between the maintenance and the testing phases based
on the idea of the accelerated life testing model in hard-
ware products.

4. PRESENTED MODEL FOR MAINTENA-
NCE PHASE

In this paper, the NHPP model is used to predict the
reliability of software system in maintenance phase from

the view of users.
In the research conducted by Yamada et al. (1989 [2],

1991) and Okamura et al. (2001), an environmental coef-
ficient k is introduced, which represents the differences
between the environment in the testing phase (effort, test
method, and so on) and the software maintenance envi-
ronment, such as the frequency of use.

However, in most situations, the software systems
are maintained by the system users themselves, and such
systems may have been used for a considerably long pe-
riod of time. Various details concerning the development
stages are usually not known to the users who are respon-
sible for the maintenance of these systems. In such a
situation, the statistical information collected in the test-
ing phase is not available to estimate the fault detection
process in the maintenance phase.

In the presented model for maintenance environment
is based on the following assumptions:
a: The software failure-occurrence phenomenon in main-

tenance phase can be described by an exponential SRGM.
b: The statistical information collected in the testing phase

is not available to estimate the fault detection process
in the maintenance phase.

c: A parameter bm represents the fault detection rate per
unit time in maintenance phase, regardless of the dif-
ferent environment between testing and maintenance
phases.

Because an NHPP model is characterized by its

mean value function, the proposed model is described by
the mean value function defined in the following.

()tb
m

meatH −−= 1)((4)

and

Table 1. Typical NHPP models

NHPP Model Mean value function H(t) Fault intensity function Remark

Exponential
SRGM

()bteatH −−= 1)(
)0,0(>> ba

btabet −=)(λ
Failure-occurrence with a constant
fault-detection rate at an arbitrary
time.

Delayed S-
shaped SRGM

])1(1[)(btebtatH −+−=
)0,0(>> ba

btteabt −= 2)(λ

Fault-detection process is descry-
bed by successive two phenom-
ena, failure-detection and faultis-
olation process.

Inflection S-
shaped SRGM)1(

)1()(
bt

bt

ce
eatH
−

−

+

−
=

)0,0,0(>>> cba

2)1(
)1(

)(
bt

bt

ce
ecab

t
−

−

+

+
=λ

Failure-occurrence with mutual
dependency of detected faults

SRGM : Software Reliability Growth Model
a: initial number of faults presented in the software prior to testing
b: parameter representing the fault-detection rate in development phase
c: parameter of inflection-rate of detected fault

54 Yung-Chung Chen ᆞShih-Ying Tsai ᆞPeter Chen

tb
mm

mebadttdHt −⋅=≡ /)()(λ (5)

In the two equations above, am is the expected number of
initial inherent faults before operation, bm is the software
failure occurrence rate per inherent fault in maintenance
phase.

The expected number of faults remaining at the sys-
tem testing time t which is obtained by taking expectation
of random variable {N(∞)- N(t)} is

)()]()([)(tHatNNEtn m −=−∞= (6)

Given that the software operation has been going on

up to time t, the software reliability in the time-interval (t;
t + x] (x ≧ 0) is expressed as:

)0,0(
)}]()({exp[)|(
≥≥

−+−=
xt

tHxtHtxR
 (7)

In the equation above, t is the total operating time of the
last failure and x is the operating time measured from the
last failure.

Moreover, the instantaneous mean time between
software failures (instantaneous MTBF) is a useful meas-
ure for the frequency of software failure occurrence, and
is given by:

)(
1)(
t

tMTBFI λ
= (8)

5. METHOD FOR PARAMETER ESTIMA-
TION

Suppose that k data pairs (tk, yk), (k = 1, 2, ⋯, n) are
observed during the system maintenance phase, where the
total number of software failures observed in the time
interval (0, tk] is yk (k = 1, 2, ⋯, n). The logarithmic like-
lihood function of the NHPP model with mean value
function H(t) of Eq. (4) is

∑
=

−− −−=
n

k
kkkk tHtHyyL

1
11)}()(ln{)(ln

∑
=

−−−−
n

k
kkn yytH

1
1 }!)ln{()((9)

where, ()tb
m

meatH −−= 1)(

The log likelihood in the case of the logarithmic
likelihood function of the proposed model for mainte-
nance phase with mean value function H(t) of Eq. (4) can
be written as:

}ln{)(lnln
1

1
1 kmkm tb

n

k

tb
kkmn e-ey-yayL −

=

−
−∑ −×+=

∑
=

−
− −−−−

n

k
kk

tb
m yyeka nm

1
1 })!ln{()1((10)

Maximizing Eq. (9) with respect to am and bm, we

have

nmtb
n

m
e
y

a
−−

=
1

 (11)

and

∑
=

−−

−
−

−
−

−

−

−
=

− −

−n

k
tbtb

tb
k

tb
kkk

tb

tb
nn

kmkm

kmkm

nm

nm

ee
et-ety-y

e
ety

1

11
1

1))((
1

The point estimates of am and bm can be solved by

using numerical methods such as Newton-Raphson
method.

6. NUMERICAL EXAMPLE

A numerical example is used to illustrate the applica-
tion of the proposed software reliability growth model for
maintenance environment.

6.1 Analytic steps of model evaluation

In the process of model evaluation, it is necessary to
build a series of steps. These steps can systematically
analyze collected fault. The related steps and description
are as follows:

1. Collect and analyze the fault data in a fixed period

of time.
2. Selecting suitable software reliability model. In

this paper, exponential SRGM is assumed.
3. Eq. (11) and Eq. (12) are used to determine model

parameter am and parameter bm.
4. Computing the mean value of faults experienced

by using Eq. (4).
5. Suitability of model is examined by means of a

Kolmogorov-Smirnov test.

6.2 Explanation of data

Figure1 shows the fault-detection count data which
is obtained from real tracking database records of a shop

 Reliability Models for Application Software in Maintenance Phase 55

floor control system (SFC) utilized in an electronics fac-
tory.

733 faults were detected in the first 701 days after
system operation began. We randomly chose two different
subsets of fault-detection count data, subset I and subset
II from the data.

161 faults were detected in the subset I within 90
days (146th day to 235th day after operation), and 139 fur-
ther faults were detected in the subset II within another
108 days (326th day to 433th day after operation).

6.3 Analysis of numerical example

The model parameters of each subset have been esti-
mated by solving the likelihood equations given in Eq. (9):

Subset I: 1ˆma = 242.03, 1
ˆ
mb = 0.012

Subset II: 2ˆma = 189.46, 2
ˆ
mb = 0.012

The same value of 1
ˆ
mb and 2

ˆ
mb indicateds that the

fault-detection rate in these two subsets of fault-detection
count data is similar. It is because there is no apparent

difference in the organization, environment and personnel
factors between these two subsets of fault-detection count
data.

The mean value function 1Ĥ and 2Ĥ can be esti-
mated respectively as:

)1(03.242)1(ˆ)(ˆ 012.0ˆ
11

1 ttb eeatH m −− −⋅=−= (13)

)1(46.189)1(ˆ)(ˆ 012.0ˆ
22

2 ttb eeatH m −− −⋅=−= (14)

Figure 2 shows the estimated mean value function

1Ĥ and 2Ĥ respectively and the corresponding 90%
upper and lower confidence limits. The estimated remain-
ing software faults are shown in Figure 3.

The results from this investigation show that such a
model for software maintenance data are promising.

Subset I Subset II

0

2

4

6

8

10

12

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
Time (Days)

N
um

be
r o

f D
et

ac
te

d
Fa

ul
ts

Subset I Subset II

0

2

4

6

8

10

12

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
Time (Days)

N
um

be
r o

f D
et

ac
te

d
Fa

ul
ts

Figure 1. Fault-detection count data of a Shop Floor Control system

0

20
40

60

80
100

120

140
160

180

0 10 20 30 40 50 60 70 80 90
Time (Days)

C
um

ul
at

iv
e

N
um

be
r o

f F
au

lt

Upper Bound
Fitted Data
Lower Bound
Actual Data

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70 80 90 100 110

Time (Days)

C
um

ul
at

iv
e

N
um

be
r o

f F
au

lt

Upper Bound
Fitted Data
Lower Bound
Actual Data

(a) Subset I (161 faults within 90 days) (b) Subset II (139 faults within 108 days)

Figure 2. Estimated mean value functions and the corresponding 90% upper and lower confidence limits

56 Yung-Chung Chen ᆞShih-Ying Tsai ᆞPeter Chen

7. DISCUSSION AND CONCLUSION

In this paper, a software reliability growth model
based on an NHPP model have been proposed, in which
the exponential software reliability growth model is in-
corporated, and the methods of quantitative reliability
evaluation based on this model have been discussed. Nu-
merical examples based on real data are also presented.
However, there are several notorious points in this model.
The assumption that a stable maintenance environment
and perfect debugging in applying this model is unrealis-
tic in many actual maintenance processes. Other environ-
ment factors exist. For example a time variant test effort
should be considered for overcoming this deficiency. Fur-
thermore, the analysis of the proposed model under im-
perfect debugging environment should be investigated.

ACKNOWLEDGEMENT

This work was supported in part by a research grant
from Shu-Te University of Taiwan.

REFERENCES

Abran, A. and Moore, J. W. (2001), Guide to the Software
Engineering Body of Knowledge, Trial Version,
IEEE Computer Society Press.

ANSI/IEE Standard STD-729 (1991), Glossary of Soft-
ware Engineering terminology.

Kececioglu, D. (1991), Reliability Engineering Handbook,
2, Prentice-Hall, Englewood Cliffs, N. J.

Lyu, Michael R. (1996), Handbook of Software Reliability
Engineering, Los Alamitos, Calif.: IEEE Computer
Society Press, New York: McGraw Hill.

Moriguchi, S. (1996), Software Excellence: A Total Qual-
ity Management Guide, Productivity Press.

Musa, J., Iannino A., and Okumoto K. (1987), Software
Reliability: Measurement, Prediction, Application,
McGraw-Hill, New York.

Musa J., Fuoco G., Irving N., Kropfl D, and Juhlin B.
(1996), The operational profile. In Lyu MR (ed),

Handbook of software reliability engineering, (Mc-
Graw-Hill), chapter 5.

Musa, J. D. (1998), Software Reliability Engineering,
McGraw-Hill, New York.

Okumoto, K. and Goel A. L. (1980), Optimum Release
Time for Software Systems Based on Reliability and
Cost Criteria, Journal of Systems and Software, 1,
315-318.

Okamura, H., Tadashi, D., and Shunji, O. (2001), A reli-
ability assessment method for software products in
operational phase-Proposal of an accelerated life
testing model, Electronics and Communications in
Japan, Part 3, 84(8), 25-33.

Yamada, S., Ohba, M., and S. Osaki (1983), S-Shaped
Reliability Growth Modeling for Software Error De-
tection, IEEE Transaction on Reliability, 32(5), 475-
478.

Yamada, S. and Osaki, S. (1985), Cost-Reliability Opti-
mal release policies for software systems, IEEE
Trans. on Reliability, 34(5), 422-424.

Yamada, S., Ohtera, H., and Narihisa, H. (1986), Software
reliability growth models with testing effort, IEEE
Transaction on Reliability, 35(1), 19-23.

Yamada, S., Tanio Y., and Osaki, S. (1989), A software
reliability evaluation method during operation phase,
Trans IEICE, J72-D-I, 797-803, (in Japanese).

Yamada, S., Kimura, M., and Osaki, S. (1989), A note on
software reliability evaluation during operation
phase considering testing-effort expenditures, Trans
IEICE, J72-D-I, 922-924, (in Japanese).

Yamada, S., Tanio, Y., and Osaki, S. (1991), Software
reliability measurement and assessment methods
during operation phase and their comparisons, Trans
IEICE, J74-D-I, 240-248, (in Japanese).

Yamada, S., Hishitani, J., and Osaki, S. (1993), Software
Reliability Growth Model with Weibull Testing Ef-
fort: A Model and Application, IEEE Trans. on Reli-
ability, R-42, 100-105.

Yamada, S. (1993), Software reliability measurement du-
ring operational phase and its application, Journal of
Computer and Software Engineering, 1(4), 389-402.

Tamura, Y., Yamada, S., and Kimura, M. (2003), Elec-
tronics and Communications in Japan, Part 3, 86(11),
13-20.

60
80

100
120

140
160
180

200
220
240

0 10 20 30 40 50 60 70 80 90
Time (Days)

Ex
pe

ct
ed

 R
em

ai
ni

ng
 F

au
lts Estimated Remaining Faults

Actual Remaining Faults

50

70

90

110

130

150

170

190

0 10 20 30 40 50 60 70 80 90 100 110
Time (days)

Ex
pe

ct
ed

 R
em

ai
ni

ng
 F

au
lts

Estimated Remaining Faults

Actual Remaining Faults

(a) Subset I (161 faults within 90 days) (b) Subset II (139 faults within 108 days)

Figure 3. Estimated remaining software faults

