• Title/Summary/Keyword: Non-ductile reinforced concrete building

Search Result 25, Processing Time 0.029 seconds

Forced Vibration Testing of Full-scale Non-seismic Reinforced Concrete Frame Structure Retrofitted Using FRP Jacketing System (FRP자켓 시스템이 보강된 비내진 철근콘크리트 골조의 실물 크기 강제 진동 실험)

  • Shin, Jiuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.5
    • /
    • pp.281-289
    • /
    • 2018
  • Existing reinforced concrete building structures have seismic vulnerabilities due to their seismically-deficient details resulting in non-ductile behavior. The seismic vulnerabilities can be mitigated by retrofitting the buildings using a fiber-reinforced polymer column jacketing system, which can provide additional confining pressures to existing columns to improve their lateral resisting capacities. This study presents dynamic responses of a full-scale non-ductile reinforced concrete frame retrofitted using a fiber-reinforced polymer column jacketing system. A series of forced-vibration testing was performed to measure the dynamic responses (e.g. natural frequencies, story drifts and column/beam rotations). Additionally, the dynamic responses of the retrofitted frame were compared to those of the non-retrofitted frame to investigate effectiveness of the retrofit system. The experimental results demonstrate that the retrofit system installed on the first story columns contributed to reducing story drifts and column rotations. Additionally, the retrofit scheme helped mitigate damage concentration on the first story columns as compared to the non-retrofitted frame.

Seismic Collapse Risk for Non-Ductile Reinforced Concrete Buildings According to Seismic Design Categories (비연성 철근콘크리트 건물의 내진설계범주에 따른 붕괴 위험성 평가)

  • Kim, Minji;Han, Sang Whan;Kim, Taeo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.161-168
    • /
    • 2021
  • Existing old reinforced concrete buildings could be vulnerable to earthquakes because they were constructed without satisfying seismic design and detail requirements. In current seismic design standards, the target collapse probability for a given Maximum Considered Earthquake (MCE) ground-shaking hazard is defined as 10% for ordinary buildings. This study aims to estimate the collapse probabilities of a three-story, old, reinforced concrete building designed by only considering gravity loads. Four different seismic design categories (SDC), A, B, C, and D, are considered. This study reveals that the RC building located in the SDC A region satisfies the target collapse probability. However, buildings located in SDC B, C, and D regions do not meet the target collapse probability. Since the degree of exceedance of the target probability increases with an increase in the SDC level, it is imminent to retrofit non-ductile RC buildings similar to the model building. It can be confirmed that repair and reinforcement of old reinforced concrete buildings are required.

Full-Scale Shaker Testing of Non-Ductile RC Frame Structure Retrofitted Using High-Strength Near Surface Mounted Rebars and Carbon FRP Sheets (고강도 표면매립용철근과 탄소섬유시트로 보강된 비연성 철근콘크리트 골조의 실물 진동기 실험)

  • Shin, Jiuk;Jeon, Jong-Su;Wright, Timothy R.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.43-54
    • /
    • 2019
  • Existing reinforced concrete frame buildings designed for only gravity loads have been seismically vulnerable due to their inadequate column detailing. The seismic vulnerabilities can be mitigated by the application of a column retrofit technique, which combines high-strength near surface mounted bars with a fiber reinforced polymer wrapping system. This study presents the full-scale shaker testing of a non-ductile frame structure retrofitted using the combined retrofit system. The full-scale dynamic testing was performed to measure realistic dynamic responses and to investigate the effectiveness of the retrofit system through the comparison of the measured responses between as-built and retrofitted test frames. Experimental results demonstrated that the retrofit system reduced the dynamic responses without any significant damage on the columns because it improved flexural, shear and lap-splice resisting capacities. In addition, the retrofit system contributed to changing a damage mechanism from a soft-story mechanism (column-sidesway mechanism) to a mixed-damage mechanism, which was commonly found in reinforced concrete buildings with strong-column weak-beam system.

Lateral force-displacement ductility relationship of non-ductile squat RC columns rehabilitated using FRP confinement

  • Galal, K.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.1
    • /
    • pp.75-89
    • /
    • 2007
  • Post-earthquake reconnaissance and experimental research indicate that squat reinforced concrete (RC) columns in existing buildings or bridge piers are vulnerable to non-ductile shear failure. Recently, several experimental studies were conducted to investigate upgrading the shear resistance capacity of such columns in order to modify their failure mode to ductile one. Among these upgrading methods is the use of fibre-reinforced polymer (FRP) jackets. One of the preferred analytical tools to simulate the response of frame structures to earthquake loading is the lumped plasticity macromodels due to their computational efficiency and reasonable accuracy. In these models, the columns' nonlinear response is lumped at its ends. The most important input data for such type of models is the element's lateral force-displacement backbone curve. The objective of this study is to verify an analytical method to predict the lateral force-displacement ductility relationship of axially and laterally loaded rectangular RC squat columns retrofitted with FRP composites. The predicted relationship showed good accuracy when compared with tests available in the literature.

Seismic Behavior of Non Ductile Reinforced Concrete Frame Retrofitted With Cast-In Place Infilled Shear Wall (현장타설 끼움 벽으로 보강된 비내진 상세를 갖는 철근콘크리트 골조의 내진거동)

  • Lee, Hye-Yeon;Kim, Sun-Woo;Han, Byung-Chan;Yun, Hyun-Do;Choi, Chang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.453-456
    • /
    • 2004
  • RC frames built prior to the advent of the philosophy of ductile concrete is one type of existing construction susceptible to damage. Strengthening and stiffening of such frames has been accomplished by infilled frames with cast-in-place, reinforced concrete walls. Placement of CIP shear walls within strategic bays of a structure appears to be a logical and economical method to strengthen a reinforced concrete frame and to stiffen a building in order to reduce architectural and mechanical damage. This study investigates the seismic performance of cast-in place infilled shear wall within existing frames. The object of this study is to clarify the seismic capacity and characteristics in the hysteretic behavior of bare frame, CIP infilled shear wall and CIP infilled wall reinforced diagonal bars.

  • PDF

Seismic behavior and failure modes of non-ductile three-story reinforced concrete structure: A numerical investigation

  • Hidayat, Banu A.;Hu, Hsuan-Teh;Hsiao, Fu-Pei;Han, Ay Lie;Sosa, Lisha;Chan, Li-Yin;Haryanto, Yanuar
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.457-472
    • /
    • 2021
  • Reinforced concrete (RC) buildings in Taiwan have suffered failure from strong earthquakes, which was magnified by the non-ductile detailing frames. Inadequate reinforcement as a consequence of the design philosophy prior to the introduction of current standards resulted in severe damage in the column and beam-column joint (BCJ). This study establishes a finite element analysis (FEA) of the non-ductile detailing RC column, BCJ, and three-story building that was previously tested through a tri-axial shaking table test. The results were then validated to laboratory specimens having the exact same dimensions and properties. FEA simulation integrates the concrete damage plasticity model and the elastic-perfectly plastic model for steel. The load-displacement responses of the column and BCJ specimens obtained from FEA were in a reasonable agreement with the experimental curves. The resulting initial stiffness and maximum base shear were found to be a close approximation to the experimental results. Also, the findings of a dynamic analysis of the three-story building showed that the time-history data of acceleration and displacement correlated well with the shaking table test results. This indicates the FEA implementation can be effectively used to predict the RC frame performance and failure mode under seismic loads.

Numerical analysis of under-designed reinforced concrete beam-column joints under cyclic loading

  • Sasmal, Saptarshi;Novak, Balthasar;Ramanjaneyulu, K.
    • Computers and Concrete
    • /
    • v.7 no.3
    • /
    • pp.203-220
    • /
    • 2010
  • In the present study, exterior beam-column sub-assemblage from a regular reinforced concrete (RC) building has been considered. Two different types of beam-column sub-assemblages from existing RC building have been considered, i.e., gravity load designed ('GLD'), and seismically designed but without any ductile detailing ('NonDuctile'). Hence, both the cases represent the under-designed structure at different time frame span before the introduction of ductile detailing. For designing 'NonDuctile' structure, Eurocode and Indian Standard were considered. Non-linear finite element (FE) program has been employed for analysing the sub-assemblages under cyclic loading. FE models were developed using quadratic concrete brick elements with embedded truss elements to represent reinforcements. It has been found that the results obtained from the numerical analysis are well corroborated with that of experimental results. Using the validated numerical models, it was proposed to correlate the energy dissipation from numerical analysis to that from experimental analysis. Numerical models would be helpful in practice to evaluate the seismic performance of the critical sub-assemblages prior to design decisions. Further, using the numerical studies, performance of the sub-assemblages with variation of axial load ratios (ratio is defined by applied axial load divided by axial strength) has been studied since many researchers have brought out inconsistent observations on role of axial load in changing strength and energy dissipation under cyclic load.

Strengthening of Non-ductile Reinforced Concrete (RC) frames with Expansive Joint Mortar and H-beam Frame (팽창형 접합부 모르타르와 H형강 프레임에 의한 비내진 상세를 갖는 철근콘크리트 골조의 내진보강)

  • Kim, Ji-Hyeon;Jang, Seok-Joon;Yun, Da-Ae;Kim, Dae-Young;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.127-135
    • /
    • 2019
  • The seismic performance of non-ductile reinforced concrete (RC) frame retrofitted with H-beam frame and cast expansive mortar into joint between existing RC frame and H-beam frame is investigated experimentally and analytically. RC frames considered in the study contain non-ductile reinforcement details of low-rise school building constructed in Korea before 1988. The tests were conducted on half-scale specimens simulating the lower frame assemblages of a typical school building. Two one-bay, one-story RC frames with and without retrofitting with H-beam frame and expansive joint mortar were tested to failure. Test and analysis results indicated that seismic strengthening using H-beam and expansive joint mortar significantly improved the lateral strength and stiffness of non-ductile RC frame without installing anchor bolts to fit H-beam frame into existing RC frame. The effectiveness of seismic strengthening technology proposed in the study for non-ductile RC frame was verified experimentally and analytically.

A Study on the Shear Behavior of Reinforced Concrete Beams Using of Cockle Shells as Fine Aggregate (고막 패각을 잔골재로 사용한 철근콘크리트 보의 전단 거동에 관한 연구)

  • Kim, Jeong-Sup;Shin, Yong-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.2
    • /
    • pp.89-95
    • /
    • 2004
  • 1) As result of specimen with shear reinforcing bar of reinforced concrete beam, ductile coefficient of specimen was high in specimen containing Cockle shells based on non-mixed specimen. In increase rate of specimens, yield strength was similar in specimens containing Cockle shells and non-mixed specimens and maximum strength was higher in specimen containing Cockle shells. 2) To sum up the above experimental results, it is found that using splitted Cockle shells as aggregate for concrete by 10%~ 15% showed the same or higher compressive strength and shear strength as concretes using general aggregate and it can be used as substitute aggregate of concrete. It is considered that for future use of splitted Cockle shells as substitute concrete aggregate, continuous researches of its durability, applicability and economy are needed.

The Seismic Performance of Non-Ductile Reinforced Concrete (RC) Frames with Engineered Cementitious Composite (ECC) Wing Panel Elements (ECC 날개벽 요소로 보강된 비내진상세를 갖는 철근콘크리트 골조의 내진성능)

  • Kang, Dae-Hyun;Ok, Il-Seok;Yun, Hyun-Do;Kim, Jae-Hwan;Yang, Il-Seung
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.541-549
    • /
    • 2015
  • This study was conducted to experimentally investigate the seismic retrofitting performance of non-ductile reinforced concrete (RC) frames by introducing engineered cementitious composite (ECC) wing panel elements. Non-ductile RC frame tested in this study were designed and detailed for gravity loads with insufficient or no consideration to lateral loads. Therefore, Non-ductile RC frame were not satisfied on present seismic code requirements. The precast ECC wing panels were used to improve the seismic structural performance of existing non-ductile RC frame. A series of experiments were carried out to evaluate the structural performance of ECC wing panel elements alone a non-ductile RC frame strengthened by adding ECC panel elements. Failure pattern, strength, stiffness and energy dissipation characteristics of specimens were evaluated based on the test results. The test results show that both lateral strength and stiffness were significantly improved in specimen strengthened than non-ductile RC frame. It is noted that ECC wing wall elements application on non-ductile RC frame can be effective alternative on seismic retrofit of non-ductile building.