• Title/Summary/Keyword: Non-direct measurement

Search Result 127, Processing Time 0.028 seconds

Measurement of the Slurry Flow-Field during Chemical Mechanical Polishing (Particle Image Velocimetry 기법을 이용하여, Chemical Mechanical Polishing 공정시 Slurry 유동장 측정)

  • Shin, Sang-Hee;Kim, Mun-Ki;Koh, Young-Ho;Kim, Ho-Young;Lee, Jae-Dong;Hong, Chang-Ki;Yoon, Young-Bin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.125-128
    • /
    • 2004
  • Chemical Mechanical Polishing(CMP) in semiconductor production is characterized its output property by Removal Rate(RR) and Non-Uniformity(NU). Some Previous works shows that RR is determined by production of pressure and velocity and NC is also largely affected by velocity of flow-field during CMP. This study is about the direct measurement of velocity of slurry during CMP and reconstruction whole flow-field by Particle Image Velocimetry(PIV) Techniques. Typical PIV system is tuned adequately for inspecting CMP and Slurry Flow-field is measured by changing both Pad RPM and Carrier RPM. The results show that velocity is majorly determined not by Carrier RPM, but by Pad RPM.

  • PDF

Prediction of the Radiated Noise from the Vehicle Intake System (자동차 흡기계의 방사소음 예측에 대한 연구)

  • Kim, Hoi-Jeon;Ih, Jeong-Guon;Lee, Seong-Hyun;Shinoda, K.;Kitahara, S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.105-108
    • /
    • 2005
  • The radiated noise from the automotive intake system should be predicted at the design stage. To this end, the precise measurement of in-duct acoustic source parameters of the intake system, i.e., the source strength and source impedance, is essential. Most of previous works on the measurement of acoustic source parameters were performed under a fixed engine speed condition. However, the requirement of vehicle manufacturer is the noise radiation pattern as a function of engine speed. In this study, the direct method was employed to measure the source parameters of engine intake system under a fixed engine speed and engine run-up condition. It was noted that the frequency spectra of source impedance hardly changes with varying the engine speed. Thus, it is reasonable to calculate the source strength under the engine run-up condition by assuming that source impedance is invariant with engine speed. Measured and conventional source models, i.e., constant pressure source, constant velocity source, and non-reflective source, were utilized to predict insertion loss and radiated sound pressure level. A reasonable prediction accuracy of radiated sound pressure level spectra from the intake system was given in the test vehicle when using the measured source characteristics which were acquired under the operating condition.

  • PDF

Real Time ECG Monitoring Through a Wearable Smart T-shirt

  • Mathias, Dakurah Naangmenkpeong;Kim, Sung-Il;Park, Jae-Soon;Joung, Yeun-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.16-19
    • /
    • 2015
  • A wearable sensing ECG T-shirt for ubiquitous vital signs sensing is proposed. The sensor system consists of a signal processing board and capacitive sensing electrodes which together enable measurement of an electrocardiogram (ECG) on the human chest with minimal discomfort. The capacitive sensing method was employed to prevent direct ECG measurement on the skin and also to provide maximum convenience to the user. Also, low power integrated circuits (ICs) and passive electrodes were employed in this research to reduce the power consumption of the entire system. Small flexible electrodes were placed into cotton pockets and affixed to the interior of a worn tight NIKE Pro combat T-shirt. Appropriate signal conditioning and processing were implemented to remove motion artifacts. The entire system was portable and consumed low power compared to conventional ECG devices. The ECG signal obtained from a 24 yr. old male was comparable to that of an ECG simulator.

Characteristic of the Radiation Heat Flux Distribution for the KIER Solar Furnace (KIER 태양로의 열유속 분포 특성)

  • Chai, Kwan-Kyo;Lee, Hyun-Jin;Kim, Jong-Kyu;Yoon, Hwan-Ki;Lee, Sang-Nam;Kang, Yong-Heack;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.74-79
    • /
    • 2011
  • Concentration characteristics of the KIER solar furnace are analyzed with a heat flux measurement technique. Total heat capacity of 40kW was confirmed within 1.04% average error, and the normalized maximum heat flux of 3,452 $kW/m^2$ was proved. Non-Gaussian flux distribution in the vertical direction implies that reflectors should not be random rather inclined downwards. Moreover, we characterized flux distribution variations with furnace blind opening ratio, distance from the focal plane, and misalignment of the measurement system. Based on the results, the heat flux distribution can be simply estimated once reflectivity and direct normal insolation values are known. This study will be helpful to the design and the performance evaluation of receivers or chemical reactors.

  • PDF

Adaptive Wireless Localization Filter Containing NLOS Error Mitigation Function

  • Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Range-based wireless localization system must measure accurate range between a mobile node (MN) and reference nodes. However, non-line-of-sight (NLOS) error caused by the spatial structures disturbs the localization system obtaining the accurate range measurements. Localization methods using the range measurements including NLOS error yield large localization error. But filter-based localization methods can provide comparatively accurate location solution. Motivated by the accuracy of the filter-based localization method, a filter residual-based NLOS error estimation method is presented in this paper. Range measurement-based residual contains NLOS error. By considering this factor with NLOS error properties, NLOS error is mitigated. Also a process noise covariance matrix tuning method is presented to reduce the time-delay estimation error caused by the single dynamic model-based filter when the speed or moving direction of a MN changes, that is the used dynamic model is not fit the current dynamic of a MN. The presented methods are evaluated by simulation allowing direct comparison between different localization methods. The simulation results show that the presented filter is more accurate than the iterative least squares- and extended Kalman filter-based localization methods.

High Quality Non-Transfer Single-Layer Graphene Process Grown Directly on Ti(10 nm)-Buffered Layer for Photo Lithography Process (포토 리소그래피 공정을 위한 Ti(10 nm)-Buffered층 위에 직접 성장된 고품질 무전사 단층 그래핀 공정)

  • Oh, Keo-Ryong;Han, Yire;Eom, Ji-Ho;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.21-26
    • /
    • 2021
  • Single-layer graphene is grown directly on Ti-buffered SiO2 at 100℃. As a result of the AFM measurement of the Ti buffer layer, the roughness of approximately 0.2 nm has been improved. Moreover, the Raman measurement of graphene grown on it shows that the D/G intensity ratio is extremely small, approximately 0.01, and there are no defects. In addition, the 2D/G intensity ratio had a value of approximately 2.1 for single-layer graphene. The sheet resistance is also 89 Ω/□, demonstrating excellent characteristics. The problem was solved by using graphene and a lift-off patterning method. Low-temperature direct-grown graphene does not deteriorate after the patterning process and can be used for device and micro-patterning research.

Effect of fringe divergence in fluid acceleration measurement using LDA (레이저 도플러 원리를 이용한 유체 가속도 측정)

  • Chun, Se-Jong;Nobach, Holger;Tropea, Cam;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1546-1551
    • /
    • 2004
  • The laser Doppler technique is well-established as a velocity measurement technique of high precision for flow velocity. Recently, the laser Doppler technique has also been used to measure acceleration of fluid particles. Acceleration is interesting from a fluid mechanics point of view, since the Navier Stokes equations, specifically the left-hand-side, are formulated in terms of fluid acceleration. Further, there are several avenues to estimating the dissipation rate using the acceleration. However such measurements place additional demands on the design of the optical system; in particular fringe non-uniformity must be held below about 0.0001 to avoid systematic errors. Relations expressing fringe divergence as a function of the optical parameters of the system have been given in the literature; however, direct use of these formulae to minimize fringe divergence lead either to very large measurement volumes or to extremely high intersection angles. This dilemma can be resolved by using an off-axis receiving arrangement, in which the measurement volume is truncated by a pinhole in front of the detection plane. In the present study an optical design study is performed for optimizing laser Doppler systems for fluid acceleration measurements. This is followed by laboratory validation using a round free jet and a stagnation flow, two flows in which either fluid acceleration has been previously measured or in which the acceleration is known analytically. A 90 degree off-axis receiving angle is used with a pinhole or a slit.

  • PDF

Spray Structures and Vaporizing Characteristics of a GDI Fuel Spray

  • Park, Dong-Seok;Park, Gyung-Min;Kim, Duck-Jool
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.999-1008
    • /
    • 2002
  • The spray structures and distribution characteristics of liquid and vapor phases in non-evaporating and evaporating Gasoline Direct Injection (GDI) fuel sprays were investigated using Laser Induced Exciplex Fluorescence (LIEF) technique. Dopants were 2% fluorobenzene and 9% DEMA (diethyl-methyl-amine) in 89% solution of hexane by volume. In order to study internal structure of the spray, droplet size and velocity under non-evaporating condition were measured by Phase Doppler Anemometry (PDA). Liquid and vapor phases were visualized at different moments after the start of injection. Experimental results showed that the spray could be divided into two regions by the fluorescence intensity of liquid phase: cone and mixing regions. Moreover, vortex flow of vapor phase was found in the mixing region. About 5㎛ diameter droplets were mostly distributed in the vortex flow region. Higher concentration of vapor phase due to vaporization of these droplets was distributed in this region. Particularly, higher concentration of vapor phase and lower one were balanced within the measurement area at 2ms after the start of injection.

Non-destructive Inspection of Top-Down Construction Joints of Column in SRC Structure using Ultrasonic Method (초음파법을 이용한 콘크리트 역타시공 이음부 공극의 화상검출특성)

  • Park, Seok-Kyun;Baek, Un-Chan;Lee, Han-Bum;Kim, Myoung-Mo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.4
    • /
    • pp.290-295
    • /
    • 2000
  • The joint treatment of concrete is one of the technical problems in top down construction method. Joints created with the top down construction result in serious weakness from the aspects of both structural and water-barrier function. Ultrasonic method was used for the inspection of top down construction joints of a various column in SRC structure in this study. The advantages and limitations of this method for non-destructive inspection in top down construction joints are investigated. As a result, it has been verified that the semi-direct measurement method is more effective than the other methods for detecting the voids of construction joints using ultrasonic method.

  • PDF

Injury and inflammation detection by the application of microcurrent through the skin

  • Hui, Timothy;Petrofsky, Jerrold
    • Physical Therapy Rehabilitation Science
    • /
    • v.2 no.1
    • /
    • pp.31-38
    • /
    • 2013
  • Objective: To determine the efficacy and reliability of measuring direct current microcurrent applied through the skin to determine injury in the underlying tissues. Design: Case control study. Methods: First, microcurrent was measured as decreased blood flow induced hypoxia in healthy subjects. Next, reliability was assessed by measuring over ten days with set variations in pressure and distance between the electrodes. Finally, measurements over sprained ankle were compared to measurements over comparable uninjured areas on the same injured subject. Results: For the blood flow test phase, microcurrent significantly decreased an average of 17% after 5 minutes (p<0.05), remained decreased for 30 seconds, and returned to non-occlusive levels after 2 minutes of normal circulation. The results indicate that the microcurrent decrease was not due to blood flow, and most likely from hypoxic cellular damage. For the reliability phase, the coefficients of variation averaged 10.3% for the shoulder, 14.8% for the low back, and 29.1% for the knee. Changing distance 2.5 cm between the electrodes resulted in insignificant changes. Changes in pressure had some significant effect after an increase in force of 2.6 N, affirming the need for consistent pressure for measurement. For the injury test phase, a significant 69% decrease occurred comparing injured areas to the same area on the uninjured side, and a significant 74% occurred comparing injured and non-injured areas on the same limb. Conclusions: Microcurrent through the skin shows promise as an objective method of assessing a soft tissue injury by detecting damage likely due to hypoxia.

  • PDF