• Title/Summary/Keyword: Non-dimensional coefficients

Search Result 102, Processing Time 0.028 seconds

Design of an Axial-flow Pump Using a Genetic Optimization Technique (유전적 최적화 기법을 이용한 축류 펌프의 설계)

  • Song, Jae-Wook;Oh, Jae-Min;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.795-804
    • /
    • 2002
  • The optimal design code of an axial flow pump has been developed to determine geometric and fluid dynamic variables under hydrodynamic as well as mechanical design constraints. The design code includes the optimization of the complete radial distribution of the geometry by determining the coefficients of 2$^{nd}$ order polynomials to represent the three-dimensional geometry. The optimization problem has been formulated with a nonlinear multivariable objective function, maximizing the efficiency and stall margin, while minimizing the net positive suction head required. Calculation of the objective function is based on the mean streamline analysis and through-flow analysis using the present state-of-the-art model. The optimal solution is calculated using the penalty function method in which the genetic optimizer is employed. The optimized efficiency and design variables are presented in this paper as a function of non-dimensional specific speed in the range, 2$\leq$ $n_{s}$ $\leq$10. The results can be used in preliminary design of axial flow pumps.

A Direct Integration Approach for the Estimation of Time-Dependent Boundary Heat Flux

  • Kim, Sin;Kim, Min-Chan;Kim, Kyung-Youn
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1320-1326
    • /
    • 2002
  • In a one-dimensional heat conduction domain with heated and insulated walls, an integral approach is proposed to estimate time-dependent boundary heat flux without internal measurements. It is assumed that the expression of the heat flux is not known a priori. Hence, the present inverse heat conduction problem is classified as a function estimation problem. The spatial temperature distribution is approximated as a third-order polynomial of position, whose four coefficients are determined from the heat fluxes and the temperatures at both ends at each measurement. After integrating the heat conduction equation over spatial and time domain, respectively, a simple and non-iterative recursive equation to estimate the time-dependent boundary heat flux is derived. Several examples are introduced to show the effectiveness of the present approach.

ON Φ-RECURRENT (k, μ)-CONTACT METRIC MANIFOLDS

  • Jun, Jae-Bok;Yildiz, Ahmet;De, Uday Chand
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.689-700
    • /
    • 2008
  • In this paper we prove that a $\phi$-recurrent (k, $\mu$)-contact metric manifold is an $\eta$-Einstein manifold with constant coefficients. Next, we prove that a three-dimensional locally $\phi$-recurrent (k, $\mu$)-contact metric manifold is the space of constant curvature. The existence of $\phi$-recurrent (k, $\mu$)-manifold is proved by a non-trivial example.

Applications of Stokes Eigenfunctions to the Numerical Solutions of the Navier-Stokes Equations in Channels and Pipes

  • Rummler B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.63-65
    • /
    • 2003
  • General classes of boundary-pressure-driven flows of incompressible Newtonian fluids in three­dimensional (3D) channels and in 3D pipes with known steady laminar realizations are investigated respectively. The characteristic physical and geometrical quantities of the flows are subsumed in the kinetic Reynolds number Re and a parameter $\psi$, which involves the energetic ratio and the directions of the boundary-driven part and the pressure-driven part of the laminar flow. The solution of non-stationary dimension-free Navier-Stokes equations is sought in the form $\underline{u}=u_{L}+U,\;where\;u_{L}$ is the scaled laminar velocity and periodical conditions are prescribed for U in the unbounded directions. The objects of our numerical investigations are autonomous systems (S) of ordinary differential equations for the time-dependent coefficients of the spatial Stokes eigenfunction, where these systems (S) were received by application of the Galerkin-method to the dimension-free Navier-Stokes equations for u.

  • PDF

Estimation of Pure Component Fractions in a Mixture Using Independent Component Analysis (독립성분분석을 이용한 혼합물내의 순수물질 구성비 추정)

  • Jeon Chi-Hyeok;Lee Hye-Seon;Park Hae-Sang;Hong Jae-Hwa
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1066-1070
    • /
    • 2006
  • Independent component analysis (ICA) is a statistical method for linearly transforming observed high-dimensional multivariate data into several statistically independent components. ICA has gained wide-spread attention in a variety of fields including spectrum application. We focus on the application of ICA for separating independent sources from a set of mixtures and estimating their fractions in a mixture. The proposed method of estimating fractions is based on the regression model subject to the non-negativity constraint on coefficients. Simulation experiments are performed to demonstrate the performance of the proposed approach.

  • PDF

Effect of a Concentrated Mass on the Dynamic Stability of Spinning Free-Free Beam Subjected to a Thrust (회전하는 양단자유보의 동적 안정성에 대한 추력과 집중질량의 영향에 관한 연구)

  • Yoon, Seung-Joon;Kim, Ji-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.695-700
    • /
    • 2000
  • The dynamic stability of spinning beam with free boundary conditions for both edges subjected to a tip follower force $P_0+P_1cos{\Omega}t$ is analyzed. It is studied that the beam has a concentrated mass. and then the effects of the axial locations of the mass are studied. The beam is modelled with the Timoshenko type shear deformations. The Hamilton's principle is used to derive the equations of motion, and the critical spinning speed of a beam subjected to a follower force with various non-dimensional parameters is investigated. The finite elements are used with $C^0$ continuity to analyze the spinning beam model, and the method of multiple scales is tried to investigate the dynamic instability regions. The governing equations of motion involve periodic coefficients, which are not in the form of standard Mathieu-Hill equations. The result shows that the concentrated mass increases the dynamic stability of the spinning free-free beam subjected to a thrust.

  • PDF

New Resonance Scattering Theory of Electromagnetic Waves for a Homogeneous Dielectric Cylinder (원통형 유전체에 대한 전자기파의 새로운 공진산란 이론)

  • 정용화;안창희;최명선
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2001.11a
    • /
    • pp.332-336
    • /
    • 2001
  • The new RST is recently developed by the product expansion of the scattering functions in the field of acoustics. The new formulation suggests that the scattering coefficients consist of resonance, non-resonance, and their interactional components. In the scattering problems of acoustic waves, the moduli and phase of the resonance coefficient are obtained the appropriate results through the new RST. In our recent works the new RST was successfully applied to the scattering problem of electromagnetic waves for coated conducting cylinder and sphere. In this paper, the new RST is applied to the 2-dimensional scattering problem of electromagnetic waves for a homogeneous dielectric cylinder, and the numerical results are compared with the previous RST.

  • PDF

Adaptive Noise Subtraction in Auditory Evoked Field (적응 필터를 이용한 청각 자극에 의한 뇌자도 신호에서 노이즈 제거)

  • 이동훈;안창범
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.10
    • /
    • pp.606-610
    • /
    • 2003
  • Noise subtraction using reference channel data has been used to improve signal-to-noise ratio in magnetoencephalography. In this paper, an adaptive noise subtraction model is proposed and parameters for the model are optimized. A criterion to determine an optimal update period for the filter coefficients is proposed based on the ratio of peak amplitude of evoked field (N100m) divided by the output standard deviation. Experiments are carried out using a 40 channel MEG system. From the experiments, the proposed noise subtraction method shows superior performances over existing non-adaptive methods. Two-dimensional topographic map is shown for a diagnosis with a cubic spline interpolation.

An efficient computational method for stress concentration problems

  • Shrestha, Santosh;Ohga, Mitao
    • Structural Engineering and Mechanics
    • /
    • v.22 no.5
    • /
    • pp.613-629
    • /
    • 2006
  • In this paper a recently developed scaled boundary finite element method (SBFEM) is applied to simulate stress concentration for two-dimensional structures. In addition, a simple and independent formulation for evaluating the coefficients, not only of the singular term but also higher order non-singular terms, of the stress fields near crack-tip is presented. The formulation is formed by comparing the displacement along the radial points ahead of the crack-tip with that of standard Williams' eigenfunction solution for the crack-tip. The validity of the formulation is examined by numerical examples with different geometries for a range of crack sizes. The results show good agreement with available solutions in literatures. Based on the results of the study, it is conformed that the proposed numerical method can be applied to simulate stress concentrations in both cracked and uncracked structure components more easily with relatively coarse and simple model than other computational methods.

An Experimental Study of Pneumatic Damping at the Air Chamber for an OWC-type Wave Energy Device (OWC형 파력발전 공기챔버의 공기감쇠력 실험 연구)

  • CHOI HARK-SUN;HONG SEOK-WON;KlM JIN-HA;LEW JAE-MOON
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.4 s.59
    • /
    • pp.8-14
    • /
    • 2004
  • Pneumatic damping through an orifice-type duct for an OWC-type wave energy device is studied experimentally. Forced oscillation tests are used to measure chamber pressure and velocity of air-flow through an orifice. Pneumatic damping coefficients are deducted from the experimental research, and the influence of frequency, heave amplitude, and orifice size are discussed. Finally, two formulas are proposed for the estimation of non-dimensional pneumatic damping coefficient by regression analysis. The proposed formula proves to be a reliable method for practical application.