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ON ϕ-RECURRENT (k, µ)-CONTACT METRIC MANIFOLDS

Jae-Bok Jun†, Ahmet Yildiz, and Uday Chand De

Abstract. In this paper we prove that a ϕ-recurrent (k, µ)-contact met-

ric manifold is an η-Einstein manifold with constant coefficients. Next, we
prove that a three-dimensional locally ϕ-recurrent (k, µ)-contact metric
manifold is the space of constant curvature. The existence of ϕ-recurrent

(k, µ)-manifold is proved by a non-trivial example.

1. Introduction

The notion of local symmetry of a Riemannian manifold has been weakened
by many authors in several ways to a different extent. As a weaker version of
local symmetry, T. Takahashi [13] introduced the notion of locally ϕ-symmetry
on a Sasakian manifold. Generalizing the notion of ϕ-symmetry, one of the
authors, De [10] introduced the notion of ϕ-recurrent Sasakian manifold. In
the context of contact geometry the notion of ϕ-symmetry is introduced and
studied by Boeckx, Buecken, and Vanhecke [8] with several examples. In [E.
Boeckx, A class of locally ϕ-symmetric contact metric spaces, Arch. Math. 72
(1999), 466–472], he proved that every non-Sasakian (k, µ)-manifold is locally
ϕ-symmetric in the strong sense.

In the present paper we introduce a type of (k, µ)-contact metric manifolds
called ϕ-recurrent (k, µ)-contact metric manifold which generalizes the notion
of ϕ-symmetric (k, µ)-contact metric structure of Boeckx. The (k, µ)-contact
metric manifold is one of special interest as it contains both the class of Sasakian
and non-Sasakian cases. Hence, in our opinion, this is the first time that the
notion of ϕ-recurrent manifold for the non-Sasakian case is appearing in the
literature. After preliminaries in Section 3, it is proved that a ϕ-recurrent (k, µ)-
contact metric manifold is an η-Einstein manifold with constant coefficients.
Also it is shown that the characteristic vector field of the (k, µ)-contact metric
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manifold and the vector field associated to the 1-form of recurrence are co-
directional. In Section 4, we study 3-dimensional locally ϕ-recurrent (k, µ)-
contact metric manifold. The last section provides the existence of the locally ϕ-
recurrent (k, µ)-contact metric manifold by an example which is neither locally
symmetric nor locally ϕ-symmetric.

2. Contact metric manifolds

A (2n + 1)-dimensional manifold M2n+1 is said to admit an almost contact
structure if it admits a tensor field ϕ of type (1, 1), a vector field ξ and a 1-form
η satisfying

(2.1) (a) ϕ2 = −I + η ⊗ ξ, (b) η(ξ) = 1, (c) ϕξ = 0, (d) η ◦ ϕ = 0.

An almost contact metric structure is said to be normal if the induced almost
complex structure J on the product manifold M2n+1×R defined by J(X, f d

dt ) =
(ϕX − fξ, η(X) d

dt ) is integrable, where X is tangent to M , t is the coordinate
of R and f is a smooth function on M ×R. Let g be a compatible Riemannian
metric with almost contact structure (ϕ, ξ, η), that is,

(2.2) g(ϕX, ϕY ) = g(X,Y ) − η(X)η(Y ).

Then M becomes an almost contact metric manifold equipped with an almost
contact metric structure (ϕ, ξ, η, g). From (2.2) it can be easily seen that

(2.3) (a) g(X,ϕY ) = −g(Y, ϕX), (b) g(X, ξ) = η(X)

for all vector fields X and Y . An almost contact metric structure becomes a
contact metric structure if

(2.4) g(X,ϕY ) = dη(X,Y )

for all vector fields X and Y . The 1-form η is then called a contact form and ξ
is the characteristic vector field. We define a (1, 1)-tensor field h by h = 1

2£ξϕ,
where £ denotes the Lie differentiation. Blair [3] proved that the tensor h is a
symmetric operator. Then h satisfies hϕ = −ϕh. We have Tr(h) = Tr(ϕh) = 0
and hξ = 0. Also,

(2.5) ∇Xξ = −ϕX − ϕhX

holds in a contact metric manifold. A normal contact metric manifold is a
Sasakian manifold. An almost contact metric manifold is Sasakian if and only
if

(2.6) (∇Xϕ)Y = g(X,Y )ξ − η(Y )X, X, Y ∈ TM,

where ∇ is Levi-Civita connection of the Riemannian metric g. A contact
metric manifold M2n+1(ϕ, ξ, η, g) for which ξ is a Killing vector field is said to
be a K-contact manifold. A Sasakian manifold is K-contact but not conversely.
However a 3-dimensional K-contact manifold is Sasakian [11]. It is well known
that the tangent sphere bundle of a flat Riemannian manifold admits a contact
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metric structure satisfying R(X,Y )ξ = 0 [2]. On the other hand, on a Sasakian
manifold the following holds:

(2.7) R(X,Y )ξ = η(Y )X − η(X)Y.

It is well known that there exist contact metric manifolds for which the cur-
vature tensor R and the direction of the characteristic vector field ξ satisfying
R(X,Y )ξ = 0 for any vector fields X and Y . For example, the tangent sphere
bundle of a flat Riemannian manifold admits such a structure.

As a generalization of both R(X,Y )ξ = 0 and the Sasakian case: D. E. Blair,
T. Koufogiorgos, and B. J. Papantoniou [5] considered the (k, µ)-nullity con-
dition on a contact metric manifold and gave several reasons for studying it.
The (k, µ)-nullity distribution N(k, µ) ([5], [12]) of a contact metric manifold
M is defined by

N(k, µ) : p −→ Np(k, µ) = {W ∈ TpM | R(X,Y )W

= (kI + µh) (g(Y,W )X − g(X,W )Y )}

for all X and Y ∈ TM, where (k, µ) ∈ R2. A contact metric manifold M2n+1

with ξ ∈ N(k, µ) is called a (k, µ)-contact metric manifold. We have

(2.8) R(X,Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ].

Applying a D-homothetic deformation to a contact metric manifold with
R(X,Y )ξ = 0, we obtain a contact metric manifold satisfying (2.8). In [5],
it is proved that the standard contact metric structure on the tangent sphere
bundle T1(M) satisfies the condition that ξ belongs to the (k, µ)-nullity dis-
tribution if and only if the base manifold is the space of constant curvature.
There exist examples in all dimensions and the condition that ξ belongs to
the (k, µ)-nullity distribution is invariant under D-homothetic deformations; in
dimensions greater than 5, the condition determines the curvature completely;
dimension 3 include the 3-dimensional unimodular Lie groups with a left in-
variant metric.

On a (k, µ)-contact metric manifold, k ≤ 1. If k = 1, the structure is
Sasakian (h = 0 and µ is indeterminant) and if k < 1, the (k, µ)-nullity con-
dition completely determines the curvature of M2n+1 [5]. In fact, for a (k, µ)-
manifold, the condition of being a Sasakian manifold, a K-contact manifold,
k = 1 and h = 0 are all equivalent.

In a (k, µ)-contact metric manifold, the following relations hold ([5], [7]):

(2.9) h2 = (k − 1)ϕ2, k ≤ 1,

(2.10) (∇Xϕ)Y = g(X + hX, Y )ξ − η(Y )(X + hX),

(2.11) R(ξ,X)Y = k[g(X,Y )ξ − η(Y )X] + µ[g(hX, Y )ξ − η(Y )hX],

(2.12) S(X, ξ) = 2nkη(X),
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S(X,Y ) = [2(n − 1) − nµ]g(X,Y ) + [2(n − 1) + µ]g(hX, Y )(2.13)
+[2(1 − n] + n(2k + µ)]η(X)η(Y ), n ≥ 1,

(2.14) τ = 2n(2n − 2 + k − nµ),

(2.15) S(ϕX, ϕY ) = S(X,Y ) − 2nkη(X)η(Y ) − 2(2n − 2 + µ)g(hX, Y ),

where S is the Ricci tensor of type (0, 2) and τ is the scalar curvature of the
manifold. From (2.5), it follows that

(2.16) (∇Xη)Y = g(X + hX, ϕY ).

Also in a (k, µ)-manifold, the following holds

(2.17)
η(R(X,Y )Z)

= k[g(Y,Z)η(X) − g(X,Z)η(Y )] + µ[g(hY,Z)η(X) − g(hX,Z)η(Y )].

Especially for the case µ = 2(1−n), from (2.13) it follows that the manifold
is η-Einstein.

The k-nullity distribution N(k) of a Riemannian manifold M [10] is defined
by

N(k) : p −→ Np(k) = {Z ∈ TpM | R(X,Y )Z = k(g(Y,Z)X − g(X,Z)Y },
k being a constant. If the characteristic vector field ξ ∈ N(k), then we call a
contact metric manifold an N(k)-contact metric manifold [4]. The ϕ-recurrent
N(k)-contact metric manifolds have been studied by De and Gazi [9].

If k = 1, then N(k)-contact metric manifold is Sasakian and if k = 0, then
N(k)-contact metric manifold is locally isometric to the product En+1 ×Sn(4)
for n > 1 and flat for n = 1. If k < 1, the scalar curvature is τ = 2n(2n−2+k).
If µ = 0, then a (k, µ)-contact metric manifold reduces to a N(k)-contact metric
manifold.

3. ϕ-recurrent (k, µ)-contact metric manifolds

Definition 3.1 ([13]). A Sasakian manifold is said to be locally ϕ-symmetric
if the relation

ϕ2((∇W R)(X,Y, Z) = 0
holds for all vector fields X,Y, Z,W orthogonal to ξ.

Definition 3.2 ([10]). A (k, µ)-contact metric manifold is said to be ϕ-recu-
rrent if and only if there exists a non-zero 1-form A such that

(3.1) ϕ2((∇W R)(X,Y, Z) = A(W )R(X,Y, Z)

for all vector fields X,Y, Z,W . Here X,Y, Z,W are arbitrary vector fields which
are not necessarily orthogonal to ξ.

If X,Y, Z,W are orthogonal to ξ, then the manifold is called locally ϕ-
recurrent. If the 1-form A vanishes identically, then the manifold is said to be
a locally ϕ-symmetric manifold.
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Definition 3.3 ([5]). A contact metric manifold is said to be η-Einstein if the
Ricci tensor S of type (0, 2) satisfies the condition

(3.2) S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

where a and b are smooth functions on M2n+1.

Now we prove the main theorem of the paper.

Theorem 3.1. A ϕ-recurrent (k, µ)-contact metric manifold is an η-Einstein
manifold with constant coefficients.

Proof. By virtue of (2.1)(a) and (3.1) we have

(3.3) −(∇W R)(X,Y, Z) + η((∇W R)(X,Y, Z)ξ = A(W )R(X,Y, Z),

from which it follows that

(3.4)
− g((∇W R)(X,Y, Z), U) + η((∇W R)(X,Y, Z)η(U)

= A(W )g(R(X,Y, Z), U).

Let {ei}, i = 1, 2, 3, . . . , 2n+1, be an orthonormal basis of the tangent space
at any point of the manifold. Putting X = U = {ei} in (3.4) and taking
summation over i, 1 ≤ i ≤ 2n + 1, we get

(3.5) −(∇W S)(Y,Z) +
2n+1∑
i=1

η((∇W R)(ei, Y )Z)η(ei) = A(W )S(Y,Z).

The second term of (3.5) by putting Z = ξ takes the form g((∇W R)(ei, Y )ξ,
ξ)g(ei, ξ), which is denoted by E. In this case E vanishes. Since the following
equation is well known,

g((∇W R)(ei, Y )ξ, ξ) = g(∇W R(ei, Y )ξ, ξ) − g(R(∇W ei, Y )ξ, ξ)

− g(R(ei,∇W Y )ξ, ξ) − g(R(ei, Y )∇W ξ, ξ)

at p ∈ M . Using (2.3)(b) and (2.8), we obtain

g(R(ei,∇W Y )ξ, ξ)
= g(k[η(∇W Y )ei − η(ei)∇W Y ] + µ[η(∇W Y )hei − η(ei)h∇W Y ], ξ)
= k[η(∇W Y )η(ei) − η(ei)η(∇W Y )] = 0,

since g(hX, Y ) = g(X,hY ).
Thus, we obtain

g((∇W R)(ei, Y )ξ, ξ) = g(∇W R(ei, Y )ξ, ξ) − g(R(ei, Y )∇W ξ, ξ).

In virtue of g(R(ei, Y )ξ, ξ) = g(R(ξ, ξ)ei, Y ) = 0, we have

g((∇W R)(ei, Y )ξ, ξ) + g(R(ei, Y )ξ,∇W ξ) = 0,

since (∇W g) = 0, which implies

g((∇W R)(ei, Y )ξ, ξ) = −g(R(ei, Y )ξ,∇W ξ) − g(R(ei, Y )∇W ξ, ξ) = 0.
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Using (2.5) and applying skew-symmetry of R, we get

g((∇W R)(ei, Y )ξ, ξ)
= g(R(ei, Y )ξ, ϕW + ϕhW ) + g(R(ei, Y )(ϕW + ϕhW ), ξ)
= g(R(ϕW + ϕhW, ξ)Y, ei) + g(R(ξ, ϕW + ϕhW )Y, ei).

Hence, we obtain

E =
2n+1∑
i=1

[g(R(ϕW + ϕhW, ξ)Y, ei)g(ξ, ei) + g(R(ξ, ϕW + ϕhW )Y, ei)g(ξ, ei)]

= g(R(ϕW + ϕhW, ξ)Y, ξ) + g(R(ξ, ϕW + ϕhW )Y, ξ) = 0.

Replacing Z by ξ in (3.5) and using (2.12), we have

(3.6) −(∇W S)(Y, ξ) = 2nkA(W )η(Y ).

Now, we have

(∇W S)(Y, ξ) = ∇W S(Y, ξ) − S(∇W Y, ξ) − S(Y,∇W ξ).

Using (2.5) and (2.12) in the above relation, it follows that

(3.7) (∇W S)(Y, ξ) = 2nk(∇W η)Y + S(Y, ϕW + ϕhW ).

By virtue of (2.3)(a) and (2.16), we get from (3.7)

(3.8) (∇W S)(Y, ξ) = −2nkg(ϕW + ϕhW, Y ) + S(Y, ϕW + ϕhW ).

By virtue of (3.6) and (3.8), we have

(3.9) 2nkA(W )η(Y ) = 2nkg(ϕW + ϕhW, Y ) − S(Y, ϕW + ϕhW ).

Replacing Y by ϕY in (3.9) and using (2.1)(d), (2.2) and (2.15), we get

2nkg(ϕW + ϕhW,ϕY ) − S(ϕY, ϕW + ϕhW ) = 0,

or,

2nkg[g(W + hW, Y ) − η(W + hW )η(Y )] − S(Y,W + hW )
+2nkη(Y )η(W + hW ) + 2(2n − 2 + µ)g(W + hW, hY ) = 0,

or,

2nkg(Y,W ) + 2nkg(hW, Y ) − S(Y,W ) − S(Y, hW )
+2(2n − 2 + µ)g(hW, Y ) + 2(2n − 2 + µ)g(h2W,Y ) = 0,

since g(X,hY ) = g(hX, Y ).
Now by (2.9), the above equation takes the form

S(Y,W ) + S(Y, hW ) = 2nkg(Y,W ) + [2nk + 2(2n − 2 + µ)]g(Y, hW )(3.10)

+ 2(2n − 2 + µ)(k − 1)g(Y,−W + η(W )ξ).

Now, by using (2.13), it follows that

S(Y, hW ) = (2n − 2 − nµ)g(Y, hW ) − (2n − 2 + µ)(k − 1)g(Y,W )(3.11)

+ (2n − 2 + µ)(k − 1)η(W )η(Y ).
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Hence from (3.10), we get

S(Y,W ) + (2n − 2 − nµ)g(Y, hW ) − (2n − 2 + µ)(k − 1)g(Y,W )
(3.12)

+ (2n − 2 + µ)(k − 1)η(Y )η(W )

= 2nkg(Y,W ) + [2nk + 2(2n − 2 + µ)]g(Y, hW )−2(2n − 2 + µ)(k − 1)g(Y,W )

+ 2(2n − 2 + µ)(k − 1)η(Y )η(W ),

or,

S(Y,W ) = [µ(1 − k) + 2(n − 1) + 2k]g(Y,W )(3.13)

+ [2(nk + n − 1) + µ(n + 2)]g(Y, hW )

+ (2n − 2 + µ)(k − 1)η(Y )η(W ).

Replacing W by hW and using (2.1)(a), we get from (3.13)

S(Y, hW ) = [µ(1 − k) + 2(n − 1) + 2k]g(Y, hW )(3.14)

+ [2(nk + n − 1) + µ(n + 2)]g(Y, h2W ).

From (3.11) and (3.14), using (2.9), it follows that

[µ(k − 1 − n) − 2k]g(Y, hW ) = (k − 1)[−2nk − µ(n + 1)]g(Y,W )(3.15)

+ (k − 1)[2nk + µ(n + 1)]η(Y )η(W ).

From (3.13) and (3.15), we get

S(Y,W ) = αg(Y,W ) + βη(Y )η(W ),

where α = [[µ(1−k)+2(n−1)+2k] +[ 2(nk+n−1)+µ(n+2)] [−2nk−µ(n+1)](k−1)]
µ(k−1−n)−2k ]

and β = [[2(n − 1) + µ](k − 1) + [2(nk + n − 1) + µ(n + 2)] [2nk+µ(n+1)](k−1)]
µ(k−1−n)−2k ].

So, the manifold is an η-Einstein manifold with constant coefficients. Hence
the theorem is proved. ¤
Theorem 3.2. In a ϕ-recurrent (k, µ)-contact metric manifold (M2n+1, g)
(n > 1) the characteristic vector field ξ and the vector field ρ associated to
the 1-form A are co-directional and the 1-form A is given by

A(W ) = η(W )η(ρ),

provided that (2n − 1)2k2 + µ2(k − 1) ̸= 0.

Proof. In a (k, µ)-contact metric manifold, the relation (3.3) holds. Changing
W,X, Y cyclically in (3.3) and then adding the results we obtain

− [(∇W R)(X,Y )Z + (∇XR)(Y,W )Z + (∇Y R)(W,X)Z]

+ [η((∇W R)(X,Y )Z) + η((∇XR)(Y,W )Z) + η((∇Y R)(W,X)Z)]ξ

= A(W )R(X,Y )Z + A(X)R(Y,W )Z + A(Y )R(W,X)Z,

which yields by virtue of Bianchi’s identity that

(3.16) A(W )η(R(X,Y )Z) + A(X)η(R(Y,W )Z) + A(Y )η(R(W,X)Z) = 0.
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With the help of (2.17), (3.16) reduces to

A(W )[k{g(Y,Z)η(X)−g(X,Z)η(Y )}
+ µ{g(hY,Z)η(X)−g(hX,Z)η(Y )}](3.17)

+ A(X)[k{g(W,Z)η(Y )−g(Y,Z)η(W )}
+ µ{g(hW,Z)η(Y )−g(hY,Z)η(W )}]

+ A(Y )[k{g(X,Z)η(W )−g(W,Z)η(X)}
+ µ{g(hX,Z)η(W )−g(hW,Z)η(X)}]

= 0.

Putting Y = Z = ei in (3.17) and taking summation over i, 1 ≤ i ≤ 2n + 1,
we get

(3.18) (2n−1)k[A(W )η(X)−A(X)η(W )]+µ[A(hX)η(W )−A(hW )η(X)] = 0.

Substituting X by ξ in (3.18), we have

(3.19) (2n − 1)k[A(W ) − A(ξ)η(W )] − µA(hW ) = 0.

Replacing W by hW in (3.20) and using (2.9), we get

(3.20) (2n − 1)kA(hW ) = µ(k − 1)[−A(W ) + η(W )A(ξ)].

From (3.19) and (3.20), we obtain

A(W ) = A(ξ)η(W ) = η(ρ)η(W ),

provided that
(2n − 1)2k2 + µ2(k − 1) ̸= 0,

where A(ξ) = g(ξ, ρ). This proves the theorem. ¤

4. 3-dimensional locally ϕ-recurrent (k, µ)-contact metric manifolds

On any 3-dimensional Riemannian manifold we have

R(X,Y )Z = g(Y,Z)QX − g(X,Z)QY + S(Y,Z)X(4.1)

− S(X,Z)Y − τ

2
[g(Y,Z)X − g(X,Z)Y ]

for any vector fields X,Y, Z, where Q is the Ricci operator, that is, g(QX,Y ) =
S(X,Y ) and τ is the scalar curvature of the manifold. Moreover, using Re-
mark 3.2 [5], we have

(4.2) QX = µ(λ − 1)X,

where λ =
√

1 − k, k < 1. Therefore, it follows from (4.2) that

(4.3) S(X,Y ) = µ(λ − 1)g(X,Y ).
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Thus from (4.1), (4.2), and (4.3), we get

R(X,Y )Z = 2µ(λ − 1)[g(Y,Z)X − g(X,Z)Y ](4.4)

− τ

2
[g(Y,Z)X − g(X,Z)Y ].

Taking the covariant differentiation to the both sides of the equation (4.4),
we get

(4.5) (∇W R)(X,Y )Z =
−dτ(W )

2
[g(Y,Z)X − g(X,Z)Y ].

Applying ϕ2 to the both sides of (4.5) and using (2.1)(a) and (2.1)(c), we get

(4.6) ϕ2(∇W R)(X,Y )Z =
dτ(W )

2
[g(X,Z)ϕ2Y − g(Y,Z)ϕ2X].

By (3.1) the equation (4.6) reduces to

A(W )R(X,Y )Z =
dτ(W )

2
[g(Y,Z)X−g(X,Z)Y+g(X,Z)η(Y )ξ−g(Y,Z)η(X)ξ].

Noting that we may assume that all vector fields X,Y, Z,W are orthogonal
to ξ, then we get

A(W )R(X,Y )Z =
dτ(W )

2
[g(Y,Z)X − g(X,Z)Y ].

Putting W = {ei}, where {ei}, i = 1, 2, 3, is an orthonormal basis of the
tangent space at any point of the manifold and taking summation over i, 1 ≤
i ≤ 3, we obtain

R(X,Y )Z = λ[g(Y,Z)X − g(X,Z)Y ],

where λ = dτ(ei)
2A(ei)

is a scalar, since A is a non-zero 1-form. Then by Schur’s
theorem λ will be a constant on the manifold. Therefore, M3 is of constant
curvature λ. Thus we get the following theorem:

Theorem 4.1. A 3-dimensional connected locally ϕ-recurrent (k, µ)-contact
metric manifold is the space of constant curvature.

5. Existence of locally ϕ-recurrent (k, µ)-contact metric manifolds

In this section, we construct an example of a locally ϕ-recurrent (k, µ)-
contact metric manifold to prove the existence. We consider the 3-dimensional
manifold M = {(x, y, z) ∈ R3 | x ̸= 0}, where (x, y, z) are the standard coordi-
nates in R3. Let {e1, e2, e3} be linearly independent global frame on M given
by

e1 =
2
x

∂

∂y
, e1 = 2

∂

∂x
− 4z

x

∂

∂y
+ xy

∂

∂z
, e3 =

∂

∂z
.

Let g be the Riemannian metric defined by

g(e1, e3) = g(e2, e3) = g(e1, e2) = 0, g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.
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Let η be the 1-form defined by

η(U) = g(U, e3)

for any U ∈ χ(M). Let ϕ be the (1, 1)-tensor field defined by

ϕe1 = e2, ϕe2 = −e1, ϕe3 = 0.

Then using the linearity of ϕ and g we have

η(e3) = 1,

ϕ2(U) = −U + η(U)e3

and
g(ϕU, ϕW ) = g(U,W ) − η(U)η(W )

for any U,W ∈ χ(M). Moreover

he1 = −e1, he2 = e2, and he3 = 0.

Thus for e3 = ξ, (ϕ, ξ, η, g) defines a contact metric structure on M.
Let ∇ be the Levi-Civita connection with respect to the Riemannian metric

g and R be the curvature tensor of g. Then we have

[e1, e2] = 2e3 +
2
x

e1, [e1, e3] = 0, [e2, e3] = 2e1.

The Riemannian connection ∇ of the metric tensor g is given by

2g(∇XY,Z) = Xg(Y,Z) + Y g(Z,X) − Zg(X,Y )

− g(X, [Y,Z]) − g(Y, [X,Z]) + g(Z, [X,Y ]).

Taking e3 = ξ and using the above formula for the Riemannian metric g, we
can easily calculate that

∇e1e3 = 0, ∇e2e3 = 2e1, ∇e3e3 = 0, ∇e3e1 = 0, ∇e1e2 =
2
x

e1,

∇e1e1 = −2e3, ∇e2e2 = 0, ∇e3e2 = 0, ∇e2e1 = − 2
x

e2.

From the above it can be easily seen that (ϕ, ξ, η, g) is a (k, µ)-contact metric
structure on M . Consequently M3(ϕ, ξ, η, g) is a (k, µ)-contact metric manifold
with k = − 2

x ̸= 0 and µ = − 2
x ̸= 0.

Using the above relations, we can easily calculate the non-vanishing compo-
nents of the curvature tensor as follows:

R(e2, e3)e2 = − 4
x

e1, R(e2, e3)e1 =
4
x

e2,

and components which can be obtained from these by the symmetry properties.
We shall now show that such a (k, µ)-contact metric manifold is ϕ-recurrent.

Since {e1, e2, e3} form a basis of M3, any vector field X ∈ χ(M) can be taken
as

X = a1e1 + a2e2 + a3e3,
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where ai are positive real numbers, i = 1, 2, 3. Thus the covariant derivatives
of the curvature tensor are given by

(∇XR)(e2, e3)e1 =
−8a2

x2
e2, (∇XR)(e2, e3)e2 =

8a2

x2
e1.

This implies that

ϕ2((∇XR)(e2, e3)e1) =
8a2

x2
e2, ϕ2((∇XR)(e2, e3)e2) =

−8a2

x2
e1.

Let us consider the non-vanishing 1-form

A(X) =
2a2

x

at any point p ∈ M3. Then we get

ϕ2((∇XR)(e2, e3)e1) = A(X)R(e2, e3)e1,

and
ϕ2((∇XR)(e2, e3)e2) = A(X)R(e2, e3)e2.

This implies that the manifold under consideration is a locally ϕ-recurrent
(k, µ)-contact metric manifold which is neither locally symmetric nor locally
ϕ-symmetric.
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