ON ϕ-RECURRENT (k, μ)-CONTACT METRIC MANIFOLDS

Jae-Bok Jun \dagger, Ahmet Yildiz, and Uday Chand De

Abstract

In this paper we prove that a ϕ-recurrent (k, μ)-contact metric manifold is an η-Einstein manifold with constant coefficients. Next, we prove that a three-dimensional locally ϕ-recurrent (k, μ)-contact metric manifold is the space of constant curvature. The existence of ϕ-recurrent (k, μ)-manifold is proved by a non-trivial example.

1. Introduction

The notion of local symmetry of a Riemannian manifold has been weakened by many authors in several ways to a different extent. As a weaker version of local symmetry, T. Takahashi [13] introduced the notion of locally ϕ-symmetry on a Sasakian manifold. Generalizing the notion of ϕ-symmetry, one of the authors, De [10] introduced the notion of ϕ-recurrent Sasakian manifold. In the context of contact geometry the notion of ϕ-symmetry is introduced and studied by Boeckx, Buecken, and Vanhecke [8] with several examples. In [E. Boeckx, A class of locally ϕ-symmetric contact metric spaces, Arch. Math. 72 (1999), 466-472], he proved that every non-Sasakian (k, μ)-manifold is locally ϕ-symmetric in the strong sense.

In the present paper we introduce a type of (k, μ)-contact metric manifolds called ϕ-recurrent (k, μ)-contact metric manifold which generalizes the notion of ϕ-symmetric (k, μ)-contact metric structure of Boeckx. The (k, μ)-contact metric manifold is one of special interest as it contains both the class of Sasakian and non-Sasakian cases. Hence, in our opinion, this is the first time that the notion of ϕ-recurrent manifold for the non-Sasakian case is appearing in the literature. After preliminaries in Section 3, it is proved that a ϕ-recurrent (k, μ) contact metric manifold is an η-Einstein manifold with constant coefficients. Also it is shown that the characteristic vector field of the (k, μ)-contact metric

Received January 16, 2008; Revised August 18, 2008.
2000 Mathematics Subject Classification. 53C15, 53C40.
$K e y$ words and phrases. (k, μ)-contact metric manifolds, η-Einstein manifold, ϕ-recurrent (k, μ)-contact metric manifolds.
\dagger Supported by KMU 2008.
manifold and the vector field associated to the 1-form of recurrence are codirectional. In Section 4, we study 3 -dimensional locally ϕ-recurrent (k, μ) contact metric manifold. The last section provides the existence of the locally ϕ recurrent (k, μ)-contact metric manifold by an example which is neither locally symmetric nor locally ϕ-symmetric.

2. Contact metric manifolds

A $(2 n+1)$-dimensional manifold $M^{2 n+1}$ is said to admit an almost contact structure if it admits a tensor field ϕ of type (1,1), a vector field ξ and a 1-form η satisfying
(a) $\phi^{2}=-I+\eta \otimes \xi$,
(b) $\eta(\xi)=1$,
(c) $\phi \xi=0$,
(d) $\eta \circ \phi=0$.

An almost contact metric structure is said to be normal if the induced almost complex structure J on the product manifold $M^{2 n+1} \times \mathbb{R}$ defined by $J\left(X, f \frac{d}{d t}\right)=$ $\left(\phi X-f \xi, \eta(X) \frac{d}{d t}\right)$ is integrable, where X is tangent to M, t is the coordinate of \mathbb{R} and f is a smooth function on $M \times \mathbb{R}$. Let g be a compatible Riemannian metric with almost contact structure (ϕ, ξ, η), that is,

$$
\begin{equation*}
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.2}
\end{equation*}
$$

Then M becomes an almost contact metric manifold equipped with an almost contact metric structure (ϕ, ξ, η, g). From (2.2) it can be easily seen that

$$
\begin{equation*}
\text { (a) } g(X, \phi Y)=-g(Y, \phi X), \quad \text { (b) } g(X, \xi)=\eta(X) \tag{2.3}
\end{equation*}
$$

for all vector fields X and Y. An almost contact metric structure becomes a contact metric structure if

$$
\begin{equation*}
g(X, \phi Y)=d \eta(X, Y) \tag{2.4}
\end{equation*}
$$

for all vector fields X and Y. The 1 -form η is then called a contact form and ξ is the characteristic vector field. We define a (1,1)-tensor field h by $h=\frac{1}{2} £_{\xi} \phi$, where $£$ denotes the Lie differentiation. Blair [3] proved that the tensor h is a symmetric operator. Then h satisfies $h \phi=-\phi h$. We have $\operatorname{Tr}(h)=\operatorname{Tr}(\phi h)=0$ and $h \xi=0$. Also,

$$
\begin{equation*}
\nabla_{X} \xi=-\phi X-\phi h X \tag{2.5}
\end{equation*}
$$

holds in a contact metric manifold. A normal contact metric manifold is a Sasakian manifold. An almost contact metric manifold is Sasakian if and only if

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=g(X, Y) \xi-\eta(Y) X, \quad X, Y \in T M \tag{2.6}
\end{equation*}
$$

where ∇ is Levi-Civita connection of the Riemannian metric g. A contact metric manifold $M^{2 n+1}(\phi, \xi, \eta, g)$ for which ξ is a Killing vector field is said to be a K-contact manifold. A Sasakian manifold is K-contact but not conversely. However a 3 -dimensional K-contact manifold is Sasakian [11]. It is well known that the tangent sphere bundle of a flat Riemannian manifold admits a contact
metric structure satisfying $R(X, Y) \xi=0$ [2]. On the other hand, on a Sasakian manifold the following holds:

$$
\begin{equation*}
R(X, Y) \xi=\eta(Y) X-\eta(X) Y \tag{2.7}
\end{equation*}
$$

It is well known that there exist contact metric manifolds for which the curvature tensor R and the direction of the characteristic vector field ξ satisfying $R(X, Y) \xi=0$ for any vector fields X and Y. For example, the tangent sphere bundle of a flat Riemannian manifold admits such a structure.

As a generalization of both $R(X, Y) \xi=0$ and the Sasakian case: D. E. Blair, T. Koufogiorgos, and B. J. Papantoniou [5] considered the (k, μ)-nullity condition on a contact metric manifold and gave several reasons for studying it. The (k, μ)-nullity distribution $N(k, \mu)([5],[12])$ of a contact metric manifold M is defined by

$$
\begin{aligned}
N(k, \mu): p \longrightarrow N_{p}(k, \mu)=\{ & W \in T_{p} M \mid R(X, Y) W \\
& =(k I+\mu h)(g(Y, W) X-g(X, W) Y)\}
\end{aligned}
$$

for all X and $Y \in T M$, where $(k, \mu) \in \mathbb{R}^{2}$. A contact metric manifold $M^{2 n+1}$ with $\xi \in N(k, \mu)$ is called a (k, μ)-contact metric manifold. We have

$$
\begin{equation*}
R(X, Y) \xi=k[\eta(Y) X-\eta(X) Y]+\mu[\eta(Y) h X-\eta(X) h Y] . \tag{2.8}
\end{equation*}
$$

Applying a D-homothetic deformation to a contact metric manifold with $R(X, Y) \xi=0$, we obtain a contact metric manifold satisfying (2.8). In [5], it is proved that the standard contact metric structure on the tangent sphere bundle $T_{1}(M)$ satisfies the condition that ξ belongs to the (k, μ)-nullity distribution if and only if the base manifold is the space of constant curvature. There exist examples in all dimensions and the condition that ξ belongs to the (k, μ)-nullity distribution is invariant under D-homothetic deformations; in dimensions greater than 5 , the condition determines the curvature completely; dimension 3 include the 3-dimensional unimodular Lie groups with a left invariant metric.

On a (k, μ)-contact metric manifold, $k \leq 1$. If $k=1$, the structure is Sasakian ($h=0$ and μ is indeterminant) and if $k<1$, the (k, μ)-nullity condition completely determines the curvature of $M^{2 n+1}$ [5]. In fact, for a (k, μ) manifold, the condition of being a Sasakian manifold, a K-contact manifold, $k=1$ and $h=0$ are all equivalent.

In a (k, μ)-contact metric manifold, the following relations hold ([5], [7]):

$$
\begin{gather*}
h^{2}=(k-1) \phi^{2}, \quad k \leq 1, \tag{2.9}\\
\left(\nabla_{X} \phi\right) Y=g(X+h X, Y) \xi-\eta(Y)(X+h X), \tag{2.10}\\
R(\xi, X) Y=k[g(X, Y) \xi-\eta(Y) X]+\mu[g(h X, Y) \xi-\eta(Y) h X], \tag{2.11}\\
S(X, \xi)=2 n k \eta(X), \tag{2.12}
\end{gather*}
$$

$$
\begin{align*}
S(X, Y)= & {[2(n-1)-n \mu] g(X, Y)+[2(n-1)+\mu] g(h X, Y) } \tag{2.13}\\
& +[2(1-n]+n(2 k+\mu)] \eta(X) \eta(Y), n \geq 1, \\
& \tau=2 n(2 n-2+k-n \mu) \tag{2.14}
\end{align*}
$$

where S is the Ricci tensor of type $(0,2)$ and τ is the scalar curvature of the manifold. From (2.5), it follows that

$$
\begin{equation*}
\left(\nabla_{X} \eta\right) Y=g(X+h X, \phi Y) \tag{2.16}
\end{equation*}
$$

Also in a (k, μ)-manifold, the following holds

$$
\begin{align*}
& \eta(R(X, Y) Z) \\
= & k[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)]+\mu[g(h Y, Z) \eta(X)-g(h X, Z) \eta(Y)] . \tag{2.17}
\end{align*}
$$

Especially for the case $\mu=2(1-n)$, from (2.13) it follows that the manifold is η-Einstein.

The k-nullity distribution $N(k)$ of a Riemannian manifold M [10] is defined by

$$
N(k): p \longrightarrow N_{p}(k)=\left\{Z \in T_{p} M \mid R(X, Y) Z=k(g(Y, Z) X-g(X, Z) Y\}\right.
$$

k being a constant. If the characteristic vector field $\xi \in N(k)$, then we call a contact metric manifold an $N(k)$-contact metric manifold [4]. The ϕ-recurrent $N(k)$-contact metric manifolds have been studied by De and Gazi [9].

If $k=1$, then $N(k)$-contact metric manifold is Sasakian and if $k=0$, then $N(k)$-contact metric manifold is locally isometric to the product $E^{n+1} \times S^{n}(4)$ for $n>1$ and flat for $n=1$. If $k<1$, the scalar curvature is $\tau=2 n(2 n-2+k)$. If $\mu=0$, then a (k, μ)-contact metric manifold reduces to a $N(k)$-contact metric manifold.

3. ϕ-recurrent (k, μ)-contact metric manifolds

Definition 3.1 ([13]). A Sasakian manifold is said to be locally ϕ-symmetric if the relation

$$
\phi^{2}\left(\left(\nabla_{W} R\right)(X, Y, Z)=0\right.
$$

holds for all vector fields X, Y, Z, W orthogonal to ξ.
Definition 3.2 ([10]). A (k, μ)-contact metric manifold is said to be ϕ-recurrent if and only if there exists a non-zero 1 -form A such that

$$
\begin{equation*}
\phi^{2}\left(\left(\nabla_{W} R\right)(X, Y, Z)=A(W) R(X, Y, Z)\right. \tag{3.1}
\end{equation*}
$$

for all vector fields X, Y, Z, W. Here X, Y, Z, W are arbitrary vector fields which are not necessarily orthogonal to ξ.

If X, Y, Z, W are orthogonal to ξ, then the manifold is called locally ϕ recurrent. If the 1-form A vanishes identically, then the manifold is said to be a locally ϕ-symmetric manifold.

Definition 3.3 ([5]). A contact metric manifold is said to be η-Einstein if the Ricci tensor S of type $(0,2)$ satisfies the condition

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y) \tag{3.2}
\end{equation*}
$$

where a and b are smooth functions on $M^{2 n+1}$.
Now we prove the main theorem of the paper.
Theorem 3.1. A ϕ-recurrent (k, μ)-contact metric manifold is an η-Einstein manifold with constant coefficients.

Proof. By virtue of (2.1)(a) and (3.1) we have

$$
\begin{equation*}
-\left(\nabla_{W} R\right)(X, Y, Z)+\eta\left(\left(\nabla_{W} R\right)(X, Y, Z) \xi=A(W) R(X, Y, Z)\right. \tag{3.3}
\end{equation*}
$$

from which it follows that

$$
\begin{align*}
& -g\left(\left(\nabla_{W} R\right)(X, Y, Z), U\right)+\eta\left(\left(\nabla_{W} R\right)(X, Y, Z) \eta(U)\right. \\
= & A(W) g(R(X, Y, Z), U) \tag{3.4}
\end{align*}
$$

Let $\left\{e_{i}\right\}, i=1,2,3, \ldots, 2 n+1$, be an orthonormal basis of the tangent space at any point of the manifold. Putting $X=U=\left\{e_{i}\right\}$ in (3.4) and taking summation over $i, 1 \leq i \leq 2 n+1$, we get

$$
\begin{equation*}
-\left(\nabla_{W} S\right)(Y, Z)+\sum_{i=1}^{2 n+1} \eta\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) Z\right) \eta\left(e_{i}\right)=A(W) S(Y, Z) \tag{3.5}
\end{equation*}
$$

The second term of (3.5) by putting $Z=\xi$ takes the form $g\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi\right.$, $\xi) g\left(e_{i}, \xi\right)$, which is denoted by E. In this case E vanishes. Since the following equation is well known,

$$
\begin{aligned}
g\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi, \xi\right)= & g\left(\nabla_{W} R\left(e_{i}, Y\right) \xi, \xi\right)-g\left(R\left(\nabla_{W} e_{i}, Y\right) \xi, \xi\right) \\
& -g\left(R\left(e_{i}, \nabla_{W} Y\right) \xi, \xi\right)-g\left(R\left(e_{i}, Y\right) \nabla_{W} \xi, \xi\right)
\end{aligned}
$$

at $p \in M$. Using (2.3)(b) and (2.8), we obtain

$$
\begin{aligned}
& g\left(R\left(e_{i}, \nabla_{W} Y\right) \xi, \xi\right) \\
= & g\left(k\left[\eta\left(\nabla_{W} Y\right) e_{i}-\eta\left(e_{i}\right) \nabla_{W} Y\right]+\mu\left[\eta\left(\nabla_{W} Y\right) h e_{i}-\eta\left(e_{i}\right) h \nabla_{W} Y\right], \xi\right) \\
= & k\left[\eta\left(\nabla_{W} Y\right) \eta\left(e_{i}\right)-\eta\left(e_{i}\right) \eta\left(\nabla_{W} Y\right)\right]=0,
\end{aligned}
$$

since $g(h X, Y)=g(X, h Y)$.
Thus, we obtain

$$
g\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi, \xi\right)=g\left(\nabla_{W} R\left(e_{i}, Y\right) \xi, \xi\right)-g\left(R\left(e_{i}, Y\right) \nabla_{W} \xi, \xi\right)
$$

In virtue of $g\left(R\left(e_{i}, Y\right) \xi, \xi\right)=g\left(R(\xi, \xi) e_{i}, Y\right)=0$, we have

$$
g\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi, \xi\right)+g\left(R\left(e_{i}, Y\right) \xi, \nabla_{W} \xi\right)=0
$$

since $\left(\nabla_{W} g\right)=0$, which implies

$$
g\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi, \xi\right)=-g\left(R\left(e_{i}, Y\right) \xi, \nabla_{W} \xi\right)-g\left(R\left(e_{i}, Y\right) \nabla_{W} \xi, \xi\right)=0
$$

Using (2.5) and applying skew-symmetry of R, we get

$$
\begin{aligned}
& g\left(\left(\nabla_{W} R\right)\left(e_{i}, Y\right) \xi, \xi\right) \\
= & g\left(R\left(e_{i}, Y\right) \xi, \phi W+\phi h W\right)+g\left(R\left(e_{i}, Y\right)(\phi W+\phi h W), \xi\right) \\
= & g\left(R(\phi W+\phi h W, \xi) Y, e_{i}\right)+g\left(R(\xi, \phi W+\phi h W) Y, e_{i}\right) .
\end{aligned}
$$

Hence, we obtain

$$
\begin{aligned}
E & =\sum_{i=1}^{2 n+1}\left[g\left(R(\phi W+\phi h W, \xi) Y, e_{i}\right) g\left(\xi, e_{i}\right)+g\left(R(\xi, \phi W+\phi h W) Y, e_{i}\right) g\left(\xi, e_{i}\right)\right] \\
& =g(R(\phi W+\phi h W, \xi) Y, \xi)+g(R(\xi, \phi W+\phi h W) Y, \xi)=0 .
\end{aligned}
$$

Replacing Z by ξ in (3.5) and using (2.12), we have

$$
\begin{equation*}
-\left(\nabla_{W} S\right)(Y, \xi)=2 n k A(W) \eta(Y) \tag{3.6}
\end{equation*}
$$

Now, we have

$$
\left(\nabla_{W} S\right)(Y, \xi)=\nabla_{W} S(Y, \xi)-S\left(\nabla_{W} Y, \xi\right)-S\left(Y, \nabla_{W} \xi\right)
$$

Using (2.5) and (2.12) in the above relation, it follows that

$$
\begin{equation*}
\left(\nabla_{W} S\right)(Y, \xi)=2 n k\left(\nabla_{W} \eta\right) Y+S(Y, \phi W+\phi h W) \tag{3.7}
\end{equation*}
$$

By virtue of (2.3)(a) and (2.16), we get from (3.7)

$$
\begin{equation*}
\left(\nabla_{W} S\right)(Y, \xi)=-2 n k g(\phi W+\phi h W, Y)+S(Y, \phi W+\phi h W) \tag{3.8}
\end{equation*}
$$

By virtue of (3.6) and (3.8), we have

$$
\begin{equation*}
2 n k A(W) \eta(Y)=2 n k g(\phi W+\phi h W, Y)-S(Y, \phi W+\phi h W) \tag{3.9}
\end{equation*}
$$

Replacing Y by ϕY in (3.9) and using (2.1)(d), (2.2) and (2.15), we get

$$
2 n k g(\phi W+\phi h W, \phi Y)-S(\phi Y, \phi W+\phi h W)=0,
$$

or,

$$
\begin{aligned}
& 2 n k g[g(W+h W, Y)-\eta(W+h W) \eta(Y)]-S(Y, W+h W) \\
& +2 n k \eta(Y) \eta(W+h W)+2(2 n-2+\mu) g(W+h W, h Y)=0,
\end{aligned}
$$

or,

$$
\begin{aligned}
& 2 n k g(Y, W)+2 n k g(h W, Y)-S(Y, W)-S(Y, h W) \\
& +2(2 n-2+\mu) g(h W, Y)+2(2 n-2+\mu) g\left(h^{2} W, Y\right)=0,
\end{aligned}
$$

since $g(X, h Y)=g(h X, Y)$.
Now by (2.9), the above equation takes the form
(3.10) $S(Y, W)+S(Y, h W)=2 n k g(Y, W)+[2 n k+2(2 n-2+\mu)] g(Y, h W)$

$$
+2(2 n-2+\mu)(k-1) g(Y,-W+\eta(W) \xi) .
$$

Now, by using (2.13), it follows that

$$
\begin{align*}
S(Y, h W)= & (2 n-2-n \mu) g(Y, h W)-(2 n-2+\mu)(k-1) g(Y, W) \tag{3.11}\\
& +(2 n-2+\mu)(k-1) \eta(W) \eta(Y)
\end{align*}
$$

Hence from (3.10), we get
(3.12)

$$
\begin{aligned}
& S(Y, W)+(2 n-2-n \mu) g(Y, h W)-(2 n-2+\mu)(k-1) g(Y, W) \\
& +(2 n-2+\mu)(k-1) \eta(Y) \eta(W) \\
= & 2 n k g(Y, W)+[2 n k+2(2 n-2+\mu)] g(Y, h W)-2(2 n-2+\mu)(k-1) g(Y, W) \\
& +2(2 n-2+\mu)(k-1) \eta(Y) \eta(W),
\end{aligned}
$$

or,

$$
\begin{align*}
S(Y, W)= & {[\mu(1-k)+2(n-1)+2 k] g(Y, W) } \tag{3.13}\\
& +[2(n k+n-1)+\mu(n+2)] g(Y, h W) \\
& +(2 n-2+\mu)(k-1) \eta(Y) \eta(W)
\end{align*}
$$

Replacing W by $h W$ and using (2.1)(a), we get from (3.13)

$$
\begin{align*}
S(Y, h W)= & {[\mu(1-k)+2(n-1)+2 k] g(Y, h W) } \tag{3.14}\\
& +[2(n k+n-1)+\mu(n+2)] g\left(Y, h^{2} W\right)
\end{align*}
$$

From (3.11) and (3.14), using (2.9), it follows that

$$
\begin{align*}
{[\mu(k-1-n)-2 k] g(Y, h W)=} & (k-1)[-2 n k-\mu(n+1)] g(Y, W) \tag{3.15}\\
& +(k-1)[2 n k+\mu(n+1)] \eta(Y) \eta(W)
\end{align*}
$$

From (3.13) and (3.15), we get

$$
S(Y, W)=\alpha g(Y, W)+\beta \eta(Y) \eta(W)
$$

where $\alpha=\left[[\mu(1-k)+2(n-1)+2 k]+[2(n k+n-1)+\mu(n+2)] \frac{[-2 n k-\mu(n+1)](k-1)]}{\mu(k-1-n)-2 k}\right]$ and $\beta=\left[[2(n-1)+\mu](k-1)+[2(n k+n-1)+\mu(n+2)] \frac{[2 n k+\mu(n+1)](k-1)]}{\mu(k-1-n)-2 k}\right]$. So, the manifold is an η-Einstein manifold with constant coefficients. Hence the theorem is proved.

Theorem 3.2. In a ϕ-recurrent (k, μ)-contact metric manifold $\left(M^{2 n+1}, g\right)$ $(n>1)$ the characteristic vector field ξ and the vector field ρ associated to the 1-form A are co-directional and the 1-form A is given by

$$
A(W)=\eta(W) \eta(\rho)
$$

provided that $(2 n-1)^{2} k^{2}+\mu^{2}(k-1) \neq 0$.
Proof. In a (k, μ)-contact metric manifold, the relation (3.3) holds. Changing W, X, Y cyclically in (3.3) and then adding the results we obtain

$$
\begin{aligned}
& -\left[\left(\nabla_{W} R\right)(X, Y) Z+\left(\nabla_{X} R\right)(Y, W) Z+\left(\nabla_{Y} R\right)(W, X) Z\right] \\
& +\left[\eta\left(\left(\nabla_{W} R\right)(X, Y) Z\right)+\eta\left(\left(\nabla_{X} R\right)(Y, W) Z\right)+\eta\left(\left(\nabla_{Y} R\right)(W, X) Z\right)\right] \xi \\
= & A(W) R(X, Y) Z+A(X) R(Y, W) Z+A(Y) R(W, X) Z
\end{aligned}
$$

which yields by virtue of Bianchi's identity that

$$
\begin{equation*}
A(W) \eta(R(X, Y) Z)+A(X) \eta(R(Y, W) Z)+A(Y) \eta(R(W, X) Z)=0 \tag{3.16}
\end{equation*}
$$

With the help of (2.17), (3.16) reduces to

$$
\begin{align*}
& A(W)[k\{ g(Y, Z) \eta(X)-g(X, Z) \eta(Y)\} \\
&+\mu\{g(h Y, Z) \eta(X)-g(h X, Z) \eta(Y)\}] \tag{3.17}\\
&+A(X)[k\{g(W, Z) \eta(Y)-g(Y, Z) \eta(W)\} \\
&+\mu\{g(h W, Z) \eta(Y)-g(h Y, Z) \eta(W)\}] \\
&+A(Y)[k\{g(X, Z) \eta(W)-g(W, Z) \eta(X)\} \\
&+\mu\{g(h X, Z) \eta(W)-g(h W, Z) \eta(X)\}] \\
&=0
\end{align*}
$$

Putting $Y=Z=e_{i}$ in (3.17) and taking summation over $i, 1 \leq i \leq 2 n+1$, we get
(3.18) $(2 n-1) k[A(W) \eta(X)-A(X) \eta(W)]+\mu[A(h X) \eta(W)-A(h W) \eta(X)]=0$.

Substituting X by ξ in (3.18), we have

$$
\begin{equation*}
(2 n-1) k[A(W)-A(\xi) \eta(W)]-\mu A(h W)=0 \tag{3.19}
\end{equation*}
$$

Replacing W by $h W$ in (3.20) and using (2.9), we get

$$
\begin{equation*}
(2 n-1) k A(h W)=\mu(k-1)[-A(W)+\eta(W) A(\xi)] . \tag{3.20}
\end{equation*}
$$

From (3.19) and (3.20), we obtain

$$
A(W)=A(\xi) \eta(W)=\eta(\rho) \eta(W)
$$

provided that

$$
(2 n-1)^{2} k^{2}+\mu^{2}(k-1) \neq 0
$$

where $A(\xi)=g(\xi, \rho)$. This proves the theorem.

4. 3-dimensional locally ϕ-recurrent (k, μ)-contact metric manifolds

On any 3-dimensional Riemannian manifold we have

$$
\begin{align*}
R(X, Y) Z= & g(Y, Z) Q X-g(X, Z) Q Y+S(Y, Z) X \tag{4.1}\\
& -S(X, Z) Y-\frac{\tau}{2}[g(Y, Z) X-g(X, Z) Y]
\end{align*}
$$

for any vector fields X, Y, Z, where Q is the Ricci operator, that is, $g(Q X, Y)=$ $S(X, Y)$ and τ is the scalar curvature of the manifold. Moreover, using Remark 3.2 [5], we have

$$
\begin{equation*}
Q X=\mu(\lambda-1) X \tag{4.2}
\end{equation*}
$$

where $\lambda=\sqrt{1-k}, k<1$. Therefore, it follows from (4.2) that

$$
\begin{equation*}
S(X, Y)=\mu(\lambda-1) g(X, Y) \tag{4.3}
\end{equation*}
$$

Thus from (4.1), (4.2), and (4.3), we get

$$
\begin{align*}
R(X, Y) Z= & 2 \mu(\lambda-1)[g(Y, Z) X-g(X, Z) Y] \tag{4.4}\\
& -\frac{\tau}{2}[g(Y, Z) X-g(X, Z) Y]
\end{align*}
$$

Taking the covariant differentiation to the both sides of the equation (4.4), we get

$$
\begin{equation*}
\left(\nabla_{W} R\right)(X, Y) Z=\frac{-d \tau(W)}{2}[g(Y, Z) X-g(X, Z) Y] \tag{4.5}
\end{equation*}
$$

Applying ϕ^{2} to the both sides of (4.5) and using (2.1)(a) and (2.1)(c), we get

$$
\begin{equation*}
\phi^{2}\left(\nabla_{W} R\right)(X, Y) Z=\frac{d \tau(W)}{2}\left[g(X, Z) \phi^{2} Y-g(Y, Z) \phi^{2} X\right] . \tag{4.6}
\end{equation*}
$$

By (3.1) the equation (4.6) reduces to
$A(W) R(X, Y) Z=\frac{d \tau(W)}{2}[g(Y, Z) X-g(X, Z) Y+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi]$.
Noting that we may assume that all vector fields X, Y, Z, W are orthogonal to ξ, then we get

$$
A(W) R(X, Y) Z=\frac{d \tau(W)}{2}[g(Y, Z) X-g(X, Z) Y]
$$

Putting $W=\left\{e_{i}\right\}$, where $\left\{e_{i}\right\}, i=1,2,3$, is an orthonormal basis of the tangent space at any point of the manifold and taking summation over $i, 1 \leq$ $i \leq 3$, we obtain

$$
R(X, Y) Z=\lambda[g(Y, Z) X-g(X, Z) Y]
$$

where $\lambda=\frac{d \tau\left(e_{i}\right)}{2 A\left(e_{i}\right)}$ is a scalar, since A is a non-zero 1-form. Then by Schur's theorem λ will be a constant on the manifold. Therefore, M^{3} is of constant curvature λ. Thus we get the following theorem:
Theorem 4.1. A 3-dimensional connected locally ϕ-recurrent (k, μ)-contact metric manifold is the space of constant curvature.

5. Existence of locally ϕ-recurrent (k, μ)-contact metric manifolds

In this section, we construct an example of a locally ϕ-recurrent (k, μ) contact metric manifold to prove the existence. We consider the 3-dimensional manifold $M=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x \neq 0\right\}$, where (x, y, z) are the standard coordinates in \mathbb{R}^{3}. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be linearly independent global frame on M given by

$$
e_{1}=\frac{2}{x} \frac{\partial}{\partial y}, \quad e_{1}=2 \frac{\partial}{\partial x}-\frac{4 z}{x} \frac{\partial}{\partial y}+x y \frac{\partial}{\partial z}, \quad e_{3}=\frac{\partial}{\partial z} .
$$

Let g be the Riemannian metric defined by

$$
g\left(e_{1}, e_{3}\right)=g\left(e_{2}, e_{3}\right)=g\left(e_{1}, e_{2}\right)=0, \quad g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=g\left(e_{3}, e_{3}\right)=1
$$

Let η be the 1 -form defined by

$$
\eta(U)=g\left(U, e_{3}\right)
$$

for any $U \in \chi(M)$. Let ϕ be the $(1,1)$-tensor field defined by

$$
\phi e_{1}=e_{2}, \phi e_{2}=-e_{1}, \phi e_{3}=0
$$

Then using the linearity of ϕ and g we have

$$
\begin{gathered}
\eta\left(e_{3}\right)=1, \\
\phi^{2}(U)=-U+\eta(U) e_{3}
\end{gathered}
$$

and

$$
g(\phi U, \phi W)=g(U, W)-\eta(U) \eta(W)
$$

for any $U, W \in \chi(M)$. Moreover

$$
h e_{1}=-e_{1}, \quad h e_{2}=e_{2}, \text { and } h e_{3}=0
$$

Thus for $e_{3}=\xi,(\phi, \xi, \eta, g)$ defines a contact metric structure on M.
Let ∇ be the Levi-Civita connection with respect to the Riemannian metric g and R be the curvature tensor of g. Then we have

$$
\left[e_{1}, e_{2}\right]=2 e_{3}+\frac{2}{x} e_{1}, \quad\left[e_{1}, e_{3}\right]=0, \quad\left[e_{2}, e_{3}\right]=2 e_{1}
$$

The Riemannian connection ∇ of the metric tensor g is given by

$$
\begin{aligned}
2 g\left(\nabla_{X} Y, Z\right)= & X g(Y, Z)+Y g(Z, X)-Z g(X, Y) \\
& -g(X,[Y, Z])-g(Y,[X, Z])+g(Z,[X, Y]) .
\end{aligned}
$$

Taking $e_{3}=\xi$ and using the above formula for the Riemannian metric g, we can easily calculate that

$$
\begin{array}{r}
\nabla_{e_{1}} e_{3}=0, \quad \nabla_{e_{2}} e_{3}=2 e_{1}, \quad \nabla_{e_{3}} e_{3}=0, \quad \nabla_{e_{3}} e_{1}=0, \quad \nabla_{e_{1}} e_{2}=\frac{2}{x} e_{1} \\
\nabla_{e_{1}} e_{1}=-2 e_{3}, \quad \nabla_{e_{2}} e_{2}=0, \quad \nabla_{e_{3}} e_{2}=0, \quad \nabla_{e_{2}} e_{1}=-\frac{2}{x} e_{2}
\end{array}
$$

From the above it can be easily seen that (ϕ, ξ, η, g) is a (k, μ)-contact metric structure on M. Consequently $M^{3}(\phi, \xi, \eta, g)$ is a (k, μ)-contact metric manifold with $k=-\frac{2}{x} \neq 0$ and $\mu=-\frac{2}{x} \neq 0$.

Using the above relations, we can easily calculate the non-vanishing components of the curvature tensor as follows:

$$
R\left(e_{2}, e_{3}\right) e_{2}=-\frac{4}{x} e_{1}, \quad R\left(e_{2}, e_{3}\right) e_{1}=\frac{4}{x} e_{2}
$$

and components which can be obtained from these by the symmetry properties.
We shall now show that such a (k, μ)-contact metric manifold is ϕ-recurrent. Since $\left\{e_{1}, e_{2}, e_{3}\right\}$ form a basis of M^{3}, any vector field $X \in \chi(M)$ can be taken as

$$
X=a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3},
$$

where a_{i} are positive real numbers, $i=1,2,3$. Thus the covariant derivatives of the curvature tensor are given by

$$
\left(\nabla_{X} R\right)\left(e_{2}, e_{3}\right) e_{1}=\frac{-8 a_{2}}{x^{2}} e_{2}, \quad\left(\nabla_{X} R\right)\left(e_{2}, e_{3}\right) e_{2}=\frac{8 a_{2}}{x^{2}} e_{1}
$$

This implies that

$$
\phi^{2}\left(\left(\nabla_{X} R\right)\left(e_{2}, e_{3}\right) e_{1}\right)=\frac{8 a_{2}}{x^{2}} e_{2}, \quad \phi^{2}\left(\left(\nabla_{X} R\right)\left(e_{2}, e_{3}\right) e_{2}\right)=\frac{-8 a_{2}}{x^{2}} e_{1} .
$$

Let us consider the non-vanishing 1-form

$$
A(X)=\frac{2 a_{2}}{x}
$$

at any point $p \in M^{3}$. Then we get

$$
\phi^{2}\left(\left(\nabla_{X} R\right)\left(e_{2}, e_{3}\right) e_{1}\right)=A(X) R\left(e_{2}, e_{3}\right) e_{1}
$$

and

$$
\phi^{2}\left(\left(\nabla_{X} R\right)\left(e_{2}, e_{3}\right) e_{2}\right)=A(X) R\left(e_{2}, e_{3}\right) e_{2}
$$

This implies that the manifold under consideration is a locally ϕ-recurrent (k, μ)-contact metric manifold which is neither locally symmetric nor locally ϕ-symmetric.

References

[1] C. Baikoussis, D. E. Blair, and T. Koufogiorgos, A decomposition of the curvature tensor of a contact manifold satisfying $R(X, Y) \xi=k(\eta(Y) X-\eta(X) Y)$, Mathematics Technical Report, University of Ioannina, 1992.
[2] D. E. Blair, Two remarks on contact metric structures, Tohoku Math. J. (2) 29 (1977), no. 3, 319-324.
[3] D. E. Blair and H. Chen, A classification of 3-dimensional contact metric manifolds with $Q \phi=\phi Q . I I$, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 4, 379-383.
[4] D. E. Blair, J. S. Kim, and M. M. Tripathi, On the concircular curvature tensor of a contact metric manifold, J. Korean Math. Soc. 42 (2005), no. 5, 883-892.
[5] D. E. Blair, T. Koufogiorgos, and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91 (1995), no. 1-3, 189-214.
[6] D. E. Blair, T. Koufogiorgos, and R. Sharma, A classification of 3-dimensional contact metric manifolds with $Q \phi=\phi Q$, Kodai Math. J. 13 (1990), no. 3, 391-401.
[7] E. Boeckx, A full classification of contact metric (k, μ)-spaces, Illinois J. Math. 44 (2000), no. 1, 212-219.
[8] E. Boeckx, P. Buecken, and L. Vanhecke, ϕ-symmetric contact metric spaces, Glasg. Math. J. 41 (1999), no. 3, 409-416.
[9] U. C. De and A. K. Gazi, On Φ-recurrent $N(k)$-contact metric manifolds, Math. J. Okayama Univ. 50 (2008), 101-112.
[10] U. C. De, A. A. Shaikh, and S. Biswas, On Φ-recurrent Sasakian manifolds, Novi Sad J. Math. 33 (2003), no. 2, 43-48.
[11] J.-B. Jun and U.-K. Kim, On 3-dimensional almost contact metric manifolds, Kyungpook Math. J. 34 (1994), no. 2, 293-301.
[12] B. J. Papantoniou, Contact Riemannian manifolds satisfying $R(\xi, X) R=0$ and $\xi \in$ (k,)-nullity distribution, Yokohama Math. J. 40 (1993), no. 2, 149-161.
[13] T. Takahashi, Sasakian ϕ-symmetric spaces, Tohoku Math. J. (2) 29 (1977), no. 1, 91-113.
[14] S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tohoku Math. J. (2) 40 (1988), no. 3, 441-448.

Jae-Bok Jun
Department of Mathematics
College of Natural Science
Kookmin University
Seoul 136-702, Korea
E-mail address: jbjun@kookmin.ac.kr
Ahmet Yildiz
Art and Science Faculty
Department of Mathematics
Dumlupinar University
Kütahya, Turkey
E-mail address: ahmetyildiz@dumlupinar.edu.tr
Uday Chand De
Department of Mathematics
University of Kalyani
Kalyani-741235, West Bengal, India
E-mail address: uc_de@yahoo.com

