• Title/Summary/Keyword: Non-dimensional

Search Result 2,840, Processing Time 0.038 seconds

Free Surface Oscillation in Sloshing Problem Predicted with ALE Method

  • Ushijima Satoru
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.11-22
    • /
    • 1999
  • A numerical prediction method has been proposed to predict non-linear free surface oscillation in a three-dimensional container. The fluid motions are numerically predicted with Navier-Stokes equations discretized in a Lagrangian scheme with sufficient numerical accuracy. The profile of a free surface is precisely represented with three-dimensional body-fitted coordinates (BFC), which are regenerated in each computational step on the basis of the arbitrary Lagrangian-Eulerian (ALE) formulation. In order to confirm the reliability of the computational method, it was firstly applied to three-dimensional flows within complicated-shaped rigid boundaries, such as curved pipes and ducts. Than it was applied to benchmark computations related to free surface oscillations. Following these basic verifications, non-linear sloshings in a cylindrical tank and transitions from sloshing to swirling motions were numerically predicted. Throughout these computations, the applicability of the present computational method has been confirmed and some of the predicted free surface motions were visualized as sequential images and animations to understand their dynamic futures.

  • PDF

A New Model for the Analysis of Non-Spherical Particle Growth (새로운 비구형 입자 성장 해석 모델)

  • Jeong, Jae-In;Choi, Man-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.1020-1027
    • /
    • 2000
  • A simple model for describing the non-spherical particle growth phenomena has been developed. In this model, we solve simultaneously particle volume and surface area conservation sectional equations that consider particles' non-sphericity. From the correlation between two conserved properties of sections, we can predict the evolution of the aggregates' morphology. This model was compared with a simple monodisperse-assumed model and more rigorous two-dimensional sectional model. For comparison, formation and growth of silica particles have been simulated in a constant temperature reactor environment. This new model showed good agreement with the detailed two-dimensional sectional model in total number concentration and primary particle size. The present model successfully predicted particle size distribution and morphology without costing very heavy computation load and memory needed for the analysis of two dimensional aerosol dynamics.

Source Identification of Non-Stationary Sound.Vibration Signals Using Multi-Dimensional Spectral Analysis Method (다차원 스펙트럼 해석법을 이용한 비정상 소음.진동 신호의 소음원 규명)

  • Sim, Hyoun-Jin;Lee, Hae-Jin;Lee, You-Yub;Lee, Jung-Youn;Oh, Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1154-1159
    • /
    • 2006
  • In this paper, time-frequency analysis and multi-dimensional spectral analysis methods are applied to source identification and diagnostic of non-stationary sound vibration signals. By checking the coherences for concerned time, this simulation is very well coincident to expected results. The proposed method analyzes the signal instantaneously in both time and frequency domains. The MDSA (Multiple Dimensional Spectral Analysis) analyzes the signal in the plane of instantaneous time and instantaneous frequency at the same time. And it was verified by using the 1500cc passenger car which is accelerated from 70Hz to 95Hz in 4 seconds, the proposed method is effective in determining the vehicle diagnostic problems.

Efficient Meshless Method for Accurate Eigenvalue Analysis of Clamped Plates (고정단 평판의 고정밀도 고유치 해석을 위한 효율적인 무요소법 개발)

  • Kang, S. W.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.10
    • /
    • pp.653-659
    • /
    • 2015
  • A new formulation of the non-dimensional dynamic influence function method, which is a type of the meshless method, is introduced to extract highly accurate eigenvalues of clamped plates with arbitrary shape. Originally, the final system matrix equation of the method, which was introduced by the author in 1999, does not have a form of algebraic eigenvalue problem unlike FEM. As the result, the non-dimensional dynamic influence function method requires an inefficient process to extract eigenvalues. To overcome this weak point, a new approach for clamped plates is proposed in the paper and the validity and accuracy is shown in verification examples.

A study on the non-contact body measurements using image processing (영상처리를 이용한 인체 간접 측정기술 개발연구)

  • 장명현;김진호;김철중
    • Journal of the Ergonomics Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.35-41
    • /
    • 1989
  • In this paper a new method is proposed to create 3-dimensional coordinate values from two 2- dimensional images (side and front image of objects) using image processing system and two video cameras. This method is task requiring measurements of camera lense distortion, calibrations and conversin 2-dimensional images into 3-dimensional images. This system provides 3-dimensional me- asurement error of +5mm for about 2m length objects.

  • PDF

Three Dimensional FEM Simulation for Spinning of Non-circular Fibers

  • Kim, Heejae;Chung, Kwansoo;Youn, Jae-Ryoun
    • Fibers and Polymers
    • /
    • v.1 no.1
    • /
    • pp.37-44
    • /
    • 2000
  • A finite element method is employed fer a flow analysis of the melt spinning process of a non-circular fiber, a PET(polyethylene terephthalate) filament. The flow field is divided into two regions of die channel and spin-line. A two dimensional analysis is used for the flow within the die channel and a three dimensional analysis fur the flow along the spin-line. The Newtonian fluid is assumed for the PET melt and material properties are considered to be constant except for the viscosity. Effects of gravitation, air drag force, and surface tension are neglected. Although the spin-line length is 4.5 m only five millimeters from the spinneret are evaluated as the domain of the analysis. Isothermal and non-isothermal cases are studied fer the flow within the die channel. The relationship between the mass flow rate and the pressure gradient is presented for the two cases. Three dimensional flow along the spin-line is obtained by assuming isothermal conditions. It is shown that changes in velocity and cross-sectional shape occur mostly in the region of 1mm from the die exit.

  • PDF

Performance Analysis on the Trapezoidal Fins having Different Slope for Enhanced Heat Exchange (열교환 향상을 위한 경사각이 다른 사다리꼴 휜에 대한 성능해석)

  • 강형석;윤세창
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.16-24
    • /
    • 1999
  • Performance of the trapezoidal fins having different upper side slope is investigated by the three dimensional analytic method. It is shown that one equation can be used to analyse the trapezoidal fins having different upper side slope by adjusting the slope factor only. The performances for these fins are represented as a function of the non-dimensional fin length, fin width, Biot number and the slope factor when the remaining variables are fixed arbitrarily. One of the results is that the fin effectiveness increases as Biot number, the non-dimensional fin width and the slope factor decrease and as the non-dimensional fin length increases in the case of Bi $\leq$ 0.1 but the trend of the fin shape effect on the effectiveness is somewhat irregular for higher Biot number(i.e. Bi = 0.3).

  • PDF

A Study on Destratification System Using Bubble Plume: Dimensional Analysis and Design Methodology (버블 플룸을 이용한 탈성층의 평가: 차원해석 및 설계방법론의 제시)

  • Kim, Sung-Hoon;Kim, Jae-Yun;Park, Heekyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.827-837
    • /
    • 2005
  • In this study, we derived a new non-dimensional variable including bubble size and air diffusing area by Buckingham's theorem for making a practical correlation with experimental results. Firstly, we drew a relationship between a non-dimensional variable, $NH/u_s$, which has a form of Froude number and destratification efficiency with a simple theoretical consideration. Then we derived two non-dimensional variables by Buckingham's ${\pi}$-theorem and equating them with a form of $Fr_N$ for making single parameter to correlate overall destratification efficiency. As the result, the single parameter Be number shows a correlations with destratification efficiencies obtained from laboratory and pilot experiments. Also, for the practical applications, we conducted multiple regression analysis using Be and tank area to make predictive equations about destratification efficiency. The result also shows a successful correlations with destratification efficiency ($R^2$>0.9, p<0.001). Using this equation, we proposed a new design methodology with respect to bubble diffusing area.

Magnetic Sensitivity Improvement of 2-Dimensional Silicon Vertical Hall Device (2 차원 Si 종형 Hall 소자의 자기감도 개선)

  • Ryu, Ji-Goo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.392-396
    • /
    • 2014
  • The 2-dimensional silicon vertical Hall devices, which are sensitive to X,Y components of the magnetic field parallel to the surface of the chip, are fabricated using a modified bipolar process. It consists of the thin p-layer at Si-$SiO_2$ interface and n-epi layer to improve the sensitivity and influence of interface effect. Experimental samples are a sensor type K with and type J without $p^+$ isolation dam adjacent to the center current electrode. The results for both type show a more high sensitivity than the former's 2-dimensional vertical Hall devices and a good linearity. The measured non-linearity is about 0.8%. The sensitivity of type J and type K are about 66 V/AT and 200 V/AT, respectively. This sensor's behavior can be explained by the similar J-FET model.

Properties of the Frost Layer Formed on a Cold Flat Surface (냉각평판에 형성된 서리층의 물성치)

  • Kim, Sung-Gone;Yang, Dong-Keun;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.374-380
    • /
    • 2003
  • This paper proposes dimensionless correlations predicting properties of the frost layer formed on a cold flat surface. Experiments are carried out to obtain the correlations with various environmental parameters such as air temperature, air velocity, absolute humidity, and cooling plate temperature. As a result, the frost properties (frost layer thickness, density, surface temperature, thermal conductivity) are correlated as a function of Reynolds number, Fourier number, absolute humidity and non-dimensional temperature by using a dimensional analysis. The correlations agree well with the previous and our experimental data within a maximum error of 10%, and are used to predict the frost properties in the following ranges: Reynolds number of 20216 to 53763, Fourier number of 0.1962 to 2.5128, absolute humidity of 3.22 to 8.47, and non-dimensional temperature of 0.125 to 0.5.