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Free Surface Oscillation in Sloshing Problem
Predicted with ALE Method
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A numerical prediction method has been proposed to predict non-linear free surface cscillation in
a three-dimensional container. The fluid motions are numerically predicted with Navier-Stokes
equations discretized in a Lagrangian scheme with sufficient numerical accuracy. The profile
of a free surface is precisely represented with three-dimensional body-fitted coordinates (BFC),
which are regenerated in each computational step on the basis of the arbitrary Lagrangian-
Eulerian (ALE) formulation. In order to confirm the reliability of the computationa: method, it
was firstly applied to three-dimensional flows within complicated-shaped rigid boundaries, such
as curved pipes and ducts. Then it was applied to benchmark computations related to free
surface oscillations. Following these basic verifications, non-linear sloshings in a cylindrical tank
and transitions from sloshing to swirling motions were numerically predicted. Throughout these
computations, the applicability of the present computational method has been corfirmed and
some of the predicted free surface motions were visualized as sequential images and animations

to understand their dynamic futures.
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1. Introduction

The dynamic oscillation of liquid with a free
surface has long been of interest in a variety
of engineering fields. In particular, non-linesr
sloshings with large amplitudes and more com-
plicated swirling motions are sometimes con-
sidered as the important phenomena associated
with the engineering design and assessment.

In the present study, a computational tech-
nique has been proposed to predict non-
linear sloshings in an arbitrarily-shaped three-
dimensional container. The liquid motions
are described with Navier-Stokes equations in-
stead of velocity potential models which have

been generally adopted in usual computational
methods. The profile of a liquid surface is ad-
equately represented by the three-dimensional
curvilinear coordinates which are regenerated
in each computational step on the basis of the
arbitrary Lagrangian-Eulerian (ALE) formula-
tion. Since the boundary conditions near the
free surface can be implemented precisely in
the computational space, the present method
is particularly advantageous to the usual tech-
niques in which Eulerian computational grids
are adopted. Moreover, in this transformed
space, the governing equations are discretized
on a Lagrangian scheme in which numerical ac-
curacy is preserved at a sufficient level.
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In order to confirm the reliability of Poisson equations:
the developed computational method, it was 8%m
firstly applied to the flows surrounded by 92:07; =&m (1)

complicated-shaped rigid boundaries; three di-
mensional flows in a curved pipe and progress
of thermal stratification in a curved duct.
Then, the prediction method was applied to
two-dimensional free surface oscillations which
have been widely taken as benchmark compu-
tations. Finally, numerical predictions were
made for non-linear sloshings in a cylindrical
tank and transition from sloshing to swirling
motions. Some of the predicted results were
numerically visualized as sequential images and
animations, which allow us to understand the
dynamic futures of free surface oscillations.

2. Numerical Procedure

2.1 Grid Generation

In moving boundary problems, such as free
surface oscillations, it is necessary to take
adequate treatment for the boundary pro-
files which are deformed unsteadily and non-
uniformly. In the present method, non-
orthogonal curvilinear coordinates, which rep-
resent the free surface profile at a given mo-
ment, are regenerated in each computational
time step in order to represent its unsteady de-
formation.

In contrast to the Lagrangian grid genera-
tion, the ALE formulation allows us to create
curvilinear coordinates independently of the
liquid motion. Thus, the velocity of the com-
putational grid point may not coincide with
that of the liquid. Therefore, once a shape
of the free surface is specified, the correspond-
ing curvilinear coordinates are generated in an
arbitrary-shaped three-dimensional liquid re-
gion taking this profile as one of the boundary
conditions. The governing equations to gener-
ate the coordinates are given by the following

where z; and &, are coordinates in physical and
transformed (or computational) spaces respec-
tively and P, is a control function, which is
used to adjust the grid intervals in the physical
space. In this paper, the Einstein summation
rule is applied to the terms which have the same
subscripts. To generate the coordinates, Eq.(1)
is inversely transformed as

(a5,) () (52)
85,,6&, afL‘j a.’l:j
32:1:i 65, * 653 * ax,- ‘_
" oe. 2, (6%-) (5%7) ¥ (6&7) =0
2

where p # ¢ and r = s. Eq.(2) is discretized
and solved with iterative computstions. The
terms having asterisks ** in Eq.(2) are eval-
uated with cubic spline functions instead of
usual central difference to increase the accu-
racy, as done by Ushijima [1].

In the computational space, a unit compu-
tational volume takes a simple cubic geome-
try and consists of 27 grid points as shown in
Fig.1. The scalar variables, such as pressure,
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Fig. 1

Unit computational volume in
transformed space

are defined at the center of the unit volume as
marked by @ in Fig.1, while contravariant ve-
locity components are placed at the center on
the corresponding surface, indicated by &, B
and &.
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2.2 Governing Equations and Discretization

The incompressible liquid motion with a free
surface is described by Navier-Stokes equa-
tions instead of velocity potential models, so
that the three-dimensional flows can be treated
more generally as rotational and viscid liquids.
The governing equation is transformed into the
computational space, which is given by

Dui _ 1 6p 8§m
Dt~ pOy Ox; +F

8%u; Ot On Bui)
+%%%Eﬁl%m ®

Here u;, F;, p, p, and v are velocity and external
force in z; direction, pressure, fluid density and
kinematic viscosity, respectively. The gravity
and the forced acceleration imposed to cause
sloshing motions are included in F; in Eq.(3).
Since the ALE formulation is employed, the La-
grangian differential operator in Eq.(3) is given
by the following form [2]:

D 0

Di =5 T Un

d
where ¢ and 7 are times in the physical and
computational spaces respectively, which are
set to be identical. The contravariant velocity
components U, and Uy, represent the veloc-
ity of the liquid and that of the computational

grid point respectively, which are given by
m

Unp = u—— Bz, (5)
_ 0z; Om
UOm - 37_ 69:,- (6)

The transformed momentum equations are
discretized on a Lagrangian scheme in the com-
putational space. For convenience, Eq.(3) may
be expressed in the following form:

D’U,i
Di (7)
where PG; and D; stand for the pressure gradi-
ent and diffusion terms in Eq.(3) respectively.

=—-PGi+F;+D;
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Equation (7) can be discretized in the following
form as proposed by Ushijima [1]:

uft! =7 + [ — PG + FP
+ (gn';‘ - %D":"I)] At (®)

Here the superscript n means the computa-
tional time-step number, and prime and double
prime stand for the spatial locatiors at the up-
stream points defined in the n and n — 1 steps
respectively.

2.3 LCSI for Advective Computation

The first term on the right hand side of
Eq.(8), corresponding to the advection term, is
calculated with local cubic spline interpolation
(LCSI) method proposed by Ushijima [1].

In the one dimensional problem in &, direc-
tion, for convenience, the following cubic spline
function Sp(érm) is derived to spatially inter-
polate a variable ¢ at &, located between two

grid points, £m,_, and &m,:

_ 3
Sm (gm) — Mi_1 (émiehfm)
(sm €mi_)’

6h;
Lo 2—1h12 §mi —Em
¢1.-1 6 ) hi

(o-ma

Emi — {m‘_ . The second-order
derivatives, M;_; and M; in Eq.(9), are eval-
uated with a third-order polynomial which is
uniquely determined from the neighboring four
variables located at &{m,_, t0 &my,,-

In the three dimensional space, the similar
spatial interpolations are repeated in all three
directions, which allows us to evaluate the ad-
vection terms included in Eq.(8).

In order to confirm the accuracy of the LCSI
formulation, a pure advection problem was
solved with some different methods and they
were compared. Fig.2 shows the scalar distri-
butions calculated by the computational meth-
ods for advection terms. As indicated in Fig.2,

where h;
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Fig. 2 Unit computational volume

it was confirmed that the present LCSI has
higher accuracy than the third-order upwind
difference with finer mesh division [1].

2.4 Boundary Conditions

The kinematic free surface condition is de-
termined from the fact that the surface moves
with the liquid in the physical space as

8h 8h

E*—u’ib; = Ug3 [¢=1,2] (10)

where h is the free surface height and subscript
s means that the corresponding values are de-
fined at the grid point on the free surface. .

When the viscous stresses on a liquid-gas in-
terface are negligible, the stress conditions on
free surfaces are determined by the following
two equations:

(11)
(12)

Nigijng = Sk
TiOin; = 0

where S and k mean the coefficient of surface
tension and the curvature of the free surface
respectively. The unit vectors n; and 7; are
normal and tangential to the free surface and
the stress tensor o;; is defined by
- Oui | Ou;
035 = —podj + p (g + —3?;) (13)

J
where py is the atmospheric pressure and
4 means the dynamic viscosity. The de-
tailed forms of these boundary conditions in

the transformed space are indicated by Ushi-
jima [3]. In the present paper, it is assumed
that the atmospheric pressure equals zero and
that the effect of surface tension can be ne-
glected.

2.5 Solution Procedure

The main solution procedures are summa-
rized as follows. Firstly, initial free surface pro-
file and other necessary initial conditions are
specified. Then the three-dimensional curvi-
linear coordinates, which are coincident with
the provided free surface and the other fixed
boundary shapes, are generated. In the com-
putational space corresponding to the gener-
ated coordinates, numerical procedure for lig-
uid calculations is performed; the convection
and diffusion terms are firstly evaluated on a
Lagrangian scheme and approximate velocity
is derived with these values, assuming the pres-
sure field to be given by a hydrostatic pressure
distribution. After the converged correction
pressure is obtained from the iterative calcula-
tions, correction velocity components and free
surface levels are finally derived at a new com-
putational step. When the unsteady numerical
prediction still proceeds, the free surface pro-
file is updated and new curvilinear coordinates
are generated again for it. In this way, un-
steady numerical procedure continues until the
appointed time.

2.6 Numerical Visualization of Free Surface

The development of a numerical visualiza-
tion technique is also important in the present
study, since the predicted results are three-
dimensional and they are obtained in unsteady
conditions.

In the computation of sloshings, free surface
profiles are represented by curvilinear coordi-
nates regenerated in each computational step.
Thus, the coordinates are saved on a hard disk
at the appointed time steps during the compu-

23]
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tation. The saved data are visualized after the
computation with a post processing program,
which utilizes OpenGL libraries [4]. With this
program, calculated results are rendered on a
computer display with perspective projection
and it allows us to translate and rotate the
objects and also change their scales through
mouse operations.

While the profile of a free surface may be
drawn as a smoothly shaded model, texture
mapping is much effective to make the graph-
ics more realistic. Thus, the free surface is dis-
played using environment mapping, which ren-
ders an object as it were perfectly reflective;
the colors on the surface are those reflected to
the eye from its surroundings [4]. Some of the
predicted results will be shown later with this
environment mapping.

3. Application of Prediction Method
3.1 3D Flows in Curved Pipe

The developed computational method was
applied to a steady flow in a pipe with a 90-
degree bend, which was measured in detail with
LDV by Bovendeerd et al [5].

Fig.3 shows the generated mesh for the
curved pipe and Fig.4 indicates the predicted
velocity vectors on the section of symmetry.
The predicted axial velocity profiles in the
curved area are compared with the experimen-
tal results as shown in Fig.5, where the angles
of the sections are defined with respect to the
entrance section of the bend. From these re-
sults, it can be seen that the predicted velocity
profiles are generally in good agreement with
the experimental ones.

3.2 Thermal Stratification in Curved Duct

The present computational method was also
applied to the unsteady thermal stratification
phenomena. arising in a curved duct which has
two 90-degree bends, as illustrated in Fig.6.

In experiments, a fluid with higher temper-
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ature, Ty, was initially supplied to the duct
in a constant flow rate, so that the steady
condition was established. After creating this
steady state, the temperature of the incom-
ing fluid was lowered from Ty to T¢ during
30 seconds, where the temperature difference
Ty — Te equals 10K. The average velocity in
the duct was maintained at 10mm/s through-
out the steady and thermal tranmsient condi-
tions.

Fig.7 shows the distribution of the gener-
ated mesh. The unsteady computation was
performed and the progress of thremal strat-
ification was predicted as shown in Fig.8, in
which visualized experimental results are inde-
cated as well. The predicted results satisfac-
torily reproduce the inclined thermal interface
and horizontally stratified region, which devel-
ops in the curved area on the downstream side
after around 70 seconds from the thermal tran-
sient.

3.3 Free Surface Benchmark Computation

Since the reliability of the computational
method has been confirmed in the fixed bound-
ary problems as stated above, it was then ap-
plied to free surface benchmark computations.

Firstly free oscillation of a liquid surface with
a small amplitude was calculated in order to
confirm the conservations of mass and momen-
tum. In the two dimensional rectangular con-
tainer, which is 1.0 units in width and height as
shown in Fig.9, free oscillation is caused under
the gravity accelaration with a unit magnitude.
The initjal liquid depth is given by

h=1.0+0.0lsin[r(0.5 — z1)] (14)

These conditions are same as adopted by Ra-
maswamy [6].

Fig.10 shows the time history of tae free sur-
face displacements at both sides of the con-
tainer with free-slip conditions. As shown in
this figure, no numerical dumpings are found
and the conservations of mass and momentum
are reasonably satisfied.
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Fig. 4 Predicted velocity vectors
(W,=average velocity)
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Fig. 8 Visualized thermal stratification in experiments (left)
and corresponding computational results (right)
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Fig. 9 Container for free oscillations
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Fig. 11 free oscillation with viscous effects

On the other hand, Fig.11 shows the time
history predicted with viscous conditions, in
which liquid velocity is zero on the wall bound-
aries and kinematic viscosity of the liquid is set
at 0.01. In this case, the adequate attenuation
as calculated by Ramaswamy [6] is observed in

the present results.

Another example is a non-linear oscillation of
a free surface, which was initially investigated
by Harlow and Welch [7]. This computation
has also been taken as a benchmark computa-
tion by Ramaswamy [6] and many others. In
this case, a liquid in a rectangular container,
which is 4.8 in width and 4.0 in height as shown
in Fig.12, is completely static with a horizontal
free surface profile in the initial condition. The
kinematic viscosity of the liquid is 0.01 and a
gravity acceleration of a unit magnitude acts
downwards.

imposed prCSSl{l:?_‘ TTT
L‘l“i | PR
Z _
lg=10 4.0
X3
S 23
4.8 |

Fig. 12 Container for non-linear oscil-
lation

At the beginning of the computation, the fol-
lowing cosine pressure impulse Py (2) is imposed
on the free surface:

Py(t) = §(T) cos(2mzy/9.6) (15)

where §(T') is a dirac delta function.

The time history of the free surface displace-
ments is shown in Fig.13, in which the ampli-
tudes of the linear analysis and the numerically
predicted results by Harlow and Welch [7] are
also indicated. The present computational re-
sults show the highly non-linear spike and bub-
ble, which are quite similar to the results of
Harlow and Welch {7]

&}3)



F2HURAZE TEEAH 19
| Kerea Society of Computational Fiids Engineering
z1 direction as given by

1.2 T _ ' " a1 (t) = — X, wsin(wt) (16)
08F A e 1 where the amplitude X, and anguler frequency
- w of the forced displacement in z; direction
—'Q!; 04r S i ) ;\'\ . are 2mm and 10.22 radian/sec, respectively.
= i mear analyms\ ‘\\ ¥ This external vibration coincides with the (1,2)
g‘ 0.0 ; mode of the natural frequency [8]. Figure 15
© shows a series of the predicted free surface pro-
-0.4 files, which are visualized with the environment
N > mapping described in the section 2.6, together
-0.8¢ e 5 with the bottom and side boundaries displayed

0 1 ) 2 3 4 as wire-frame surfaces.

time

Fig. 13 Free surface displacements in non-
linear sloshing (@=preset computa-
tion, — = Harlow and Welch {7])

3.4 Sloshing in Cylindrical Tank

Following the benchmark computations, the
free surface oscillations in more practical con-
ditions were numerically predicted with the
present method. Figure 14 illustrates the def-
inition sketch, in which Cartesian coordinates
and dimensions are indicated, where R and H
are the radius of a cylindrical tank and the lig-
uid depth in the static condition respectively.
In a cylindrical tank with R = H = 0.5m,

free surface

Fig. 14 Definition sketch

the liquid with the kinematic viscosity of 0.01
cm?/s is subject to the forced acceleration in

3.5 Swirling Motion of Free Surface

It has been reported that when an axisym-
metrical tank of liquid is subject to a harmonic
vibration in a single horizontal direction, the
free surface motion may rotate harmonically
or non-harmonically around the vertical axis
of the tank. This swirling motion o waves was
observed by Hutton [9] in a cylindrical tank lat-
erally oscillated at the frequencies just below
the lowest natural frequency. In the present
investigation, transition from non-Lnear slosh-
ing to swirling motions in a cylindrical tank is
numerically predicted by setting up the same
initial trigger in xo-direction, as employed by
Tanaka and Nakayama [10]:

{X}mﬂ%ﬁ)[OSts3@H

a2(t) = [3(s) <t]

(17)

In addition, the following harmonic vibration
is continuously imposed in z;-direction:

a1(t) = Xy sin(2x ft) [0<t] (18)

where X; = —0.0178¢ and X, = Xsin(xt/6).
The geometries of the cylindrical tank are
R = 0.5m and H = 0.6m. While the natu-
ral frequency of (1,1) mode equals 0.944 Hz in
the present geometries, the calculation is per-
formed by setting f = 0.940Hz, as done by

Tanaks and Nakayama [10].
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(a) t = 0.96(s) (b) ¢ = 1.00(s) (c) t = 1.04(s)

(d) t = 1.08(s) (e) t = 1.12(s) (f) t = 1.16(s)

(g) t = 1.20(s) (h) ¢ = 1.24(s) (i) t = 1.28(s)

Fig. 15 Visualized (1,2) mode sloshing

10
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Fig. 16 Time history of free surface displacement at f = 0.940 Hz
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Fig. 17 Time history of free surface displacement at f = 0.796 Hz
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Figure 16 (a) and (b) show the surface dis-
placements at (z;,z2) = (0,0) and (2R, 0), and
(z1,22) = (R,—R) and (R, R), respectively.
On the plane of principal excitation, £ — 23
plane, a large non-linear response gradually de-
velops, as shown in Fig.16 (a). On the other
hand, while relatively small oscillation contin-
ues on T3 — r3 plane in the initial stage, as
shown in Fig.16 (b), the amplitudes becomes
larger at around ¢ = 10s, which indicates the
transition to swirling motion of the free sur-
face. In contrast, when the frequency of prin-
cipal force is set at f = 0.796 Hz, no transition
to swirling motions appears as shown in Fig.17.

4. Concluding Remarks

A numerical prediction method has been pro-
posed to predict non-linear free surface oscilla-
tion in a three-dimensional container. In the
present method, the fluid motions are numer-
ically predicted with Navier-Stokes equations
and the profile of a free surface is precisely rep-
resented with 3D BFC, which are regenerated
in every computational step on the basis of an
ALE method.

In order to .confirm the accuracy of the de-
veloped computational method, it was firstly
applied to three dimensional flows in a curved
pipe and thermally stratified flows in a curved
duct. Then it was applied to two-dimensional
free surface oscillations which have been widely
taken as benchmark computations. Finally, fol-
lowing these verifications, non-linear sloshings
in a cylindrical tank and transitions from slosh-
ing to swirling motions were numerically pre-
dicted. Throughout these computations, it can
be seen that the present computational method
has reasonable applicability to various free sur-
face oscillations.
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