• 제목/요약/키워드: Non-destructive techniques

검색결과 223건 처리시간 0.024초

터널 유지관리를 위한 안전진단시스템 개발에 관한 연구 (Development of Inspection and Diagnosis System for Safety and Maintenance in Tunnel)

  • 김영근;백기현
    • 한국터널지하공간학회 논문집
    • /
    • 제3권1호
    • /
    • pp.37-50
    • /
    • 2001
  • 최근 터널구조물에서 결함이나 변상이 많이 발생하고 있지만 터널구조물의 특수성으로 인하여 그 원인을 평가하거나, 상태 및 안전성 평가에 있어 많은 어려움을 겪고 있다. 따라서 보다 효율적인 안전진단 및 유지관리대책이 요구되고 있다. 본 연구에서는 터널에서의 정밀안전진단을 효과적으로 수행하기 위하여 터널 라이닝과 주변지반에 대한 비파괴 조사기술, 터널 라이닝의 구조적 안정성을 평가할 수 있는 해석기술, 그리고 터널의 변상원인 및 건전도를 판단할 수 있는 평가기술을 개발하여 터널의 열화 및 손상정도를 진단하고 터널의 유지관리를 위한 적절한 보수 보강대책을 제시함으로서 체계적인 터널 안전진단업무에 활용하도록 하였다.

  • PDF

유도초음파를 이용한 장거리 배관 탐상기법 (Long Range Ultrasonic Guided Wave Techniques for Inspection of Pipes)

  • 박익근;김용권;김현묵;송원준;조용상;안연식
    • Journal of Welding and Joining
    • /
    • 제23권5호
    • /
    • pp.43-48
    • /
    • 2005
  • Conventional non-destructive techniques for inspection of the weld in pipelines require significant test time and high cost. Ultrasonic guided waves have been widely studied and successfully applied to various non-destructive tests with advantage of the long-range inspection. In this paper, a study on the application of ultrasonic guided waves to the long-range inspection of the pipeline is presented using a long-range guided wave inspection system, Wavemaker SE16, GUL. The characteristics and setup of the long-range guided wave inspection system and experimental results in pipes of with various diameter are introduced. The experimental results in mock-up pipes with cluster type detects show that the minimum detectable wall thickness reduction with this guided wave system is $2\~3\%$ in the pipe cross section area. And the wall thickness reduction of $5\%$ in cross section area can be detected when actual detection level is used. Therefore, the applicability of the guided wave systeme to long-range inspection of wall thickness reduction in pipes is verified.

Non-destructive evaluation of steel and GFRP reinforced beams using AE and DIC techniques

  • Sharma, Gaurav;Sharma, Shruti;Sharma, Sandeep K.
    • Structural Engineering and Mechanics
    • /
    • 제77권5호
    • /
    • pp.637-650
    • /
    • 2021
  • The paper presents an investigation of the widely varying mechanical performance and behaviour of steel and Glass Fibre Reinforced Polymer (GFRP) reinforced concrete beams using non-destructive techniques of Acoustic Emission (AE) and Digital Image Correlation (DIC) under four-point bending. Laboratory experiments are performed on both differently reinforced concrete beams with 0.33%, 0.52% and 1.11% of tension reinforcement against balanced section. The results show that the ultimate load-carrying capacity increases with an increase in tensile reinforcement in both cases. In addition to that, AE waveform parameters of amplitude and number of AE hits successfully correlates and picks up the divergent mechanism of cracking initiation and progression of failure in steel reinforced and GFRP reinforced concrete beams. AE activity is about 20-30% more in GFRP-RC beams as compared to steel-RC beams. It was primarily due to the lower modulus of elasticity of GFRP bars leading to much larger ductility and deflections as compared to steel-RC beams. Furthermore, AE XY event plots and longitudinal strain profiles using DIC gives an online and real-time visual display of progressive AE activity and strains respectively to efficaciously depict the crack evolution and their advancement in steel-RC and GFRP-RC beams which show a close matching with the micro-and macro-cracks visually observed in the actual beams at various stages of loading.

Fatigue Crack Detection Test of Weldments Using Piezoceramic Transducers

  • KIM MYUNG HYUN;KANG SUNG WON;KEUM CHUNG-YON
    • 한국해양공학회지
    • /
    • 제19권4호
    • /
    • pp.21-27
    • /
    • 2005
  • Large welded structures, including ships and offshore structures, are normally in operation under cyclic fatigue loadings. These structures include many geometric discontinuities, as well as material discontinuities due to weld joints. The fatigue strength at these hot spots is very important for the structural performance. In the past, various Non Destructive Evaluation (NDE) techniques have been developed to detect fatigue cracks and to estimate their location and size. However, an important limitation of most of the existing NDE methods is that they are off line; the normal operation of the structure has to be interrupted, and the device often has to be disassembled. This study explores the development of a structural health monitoring system, with a special interest in applying the technique to welded structural members in ship and offshore structures. In particular, the impedance based structural health monitoring technique that employs the coupling effect of piezoceramic (PZT) materials and structures is investigated.

철도차량 차축 결함에 대한 집중 유도 전위차법 탐상의 유한요소 해석 (Finite Element Analysis of ICFPD Method for the Defect Detection of Railway Axle)

  • 김성훈;임충환;구병춘;권석진;이찬우
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.397-402
    • /
    • 2005
  • The NDT(Non-Destructive Testing) is valid for the defect detection of rolling stocks because it can be used to detect the defect in many invisible parts. For example, fatigue cracks are initiated in press fit parts that suffer from fretting fatigue damage such as the wheel seat and the NDT technique can detect those cracks. But the conventional ICFPD method can not apply to detect such cracks in press fit parts of the axle by some technical problems. In this study, we have introduced the new concept ICFPD method that can be applied in press fit parts of the axle. And we have shown the basic techniques of FEM about the new concept ICFPD method.

  • PDF

Efficiency Analysis of Acoustic Emission Control and Diagnostic Products Engineering

  • Irmuhamedova, R.M.;Sagatovo, M.V.
    • Journal of Multimedia Information System
    • /
    • 제2권4호
    • /
    • pp.317-326
    • /
    • 2015
  • The paper deals with the analysis of the effectiveness of acoustic emission monitoring and diagnostics of engineering products. We discuss the results of the processing results of the field experiment to study the acoustic emission in the alloy and its welded joints in the presence of technological defects. We study the characteristics of the output of acoustic emission signals at different stages of elastic-plastic deformation of alloys. Analyzed acoustic chart and the output waveform of the acoustic emission for the different types of welds. Studies have shown the effectiveness of the Acoustic emission techniques and help improve the accuracy of non-destructive testing systems in problems of automation and control.

전력용 기기의 예방진단을 위한 부분방전측정 (The measurement of partial discharge for preventive diagnosis in power machinery)

  • 김태성;구할본;임장섭;정우성
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제7권1호
    • /
    • pp.42-48
    • /
    • 1994
  • The preventive diagnosis technique for power system is being highlighted as a research area for deterioration of insulation in machinery because of high-voltage power system. We make efforts to develop not only diagnosis of aging state but also detection of defects in the initial stage from preventive diagnosis technique. Especially, partial discharge is actively studied as a non-destructive diagnosis technique and very useful because partial discharge measurement reduces damage than conventional diagnosis technique. The loaded stress during this test is smaller than that of other diagnosis techniques. But the continuous research for various complicated analysis method is required because partial discharge has very small signals and its signals have complex forms. In this paper, the measurement of partial discharge was investigated and studied on many specimens with void. We made samples having artificial voids and measured partial discharge. In order to use as a practical diagnosis technique, we studied ways of measurement, measured illustrations and types of partial discharge which could be used in order to diagnose defects of power machinery.

  • PDF

A Review of the Applications of Spectroscopy for the Detection of Microbial Contaminations and Defects in Agro Foods

  • Kandpal, Lalit Mohan;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • 제39권3호
    • /
    • pp.215-226
    • /
    • 2014
  • Recently, spectroscopy has emerged as a potential tool for quality evaluation of numerous food and agricultural products because it provides information regarding both spectral distribution and image features of the sample (i.e., hyperspectral imaging). Spectroscopic techniques reveal hidden information regarding the sample and do so in a non-destructive manner. This review describes the various approaches of spectroscopic modalities, especially hyperspectroscopy and vibrational spectroscopies (i.e., Raman spectroscopy and Fourier transform near infrared spectroscopy) combined with chemometrics for the non-destructive assessment of contaminations and defects in agro-food products.

NONDESTRUCTIVE/IN-FIELD CHARACTERIZATION OF TENSILE PROPERTIES AND RESIDUAL STRESS OF WELDED STRUCTURES USING ADVANCED INDENTATION TECHNIQUE

  • Park, Yeol;Dongil Son;Kim, Kwang-Ho;Park, S. Joon;Jang, Jae-il;Dongil Kwon
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.668-674
    • /
    • 2002
  • Structural integrity assessment is indispensable for preventing catastrophic failure of industrial structures/components/facilities. This diagnosis of operating components should be done periodically for safe maintenance and economical repair. However, conventional standard methods for mechanical properties have the problems of bulky specimen, destructive and complex procedure of specimen sampling. Especially, the mechanical properties at welded zone including weldment and heat affected zone could not be evaluated individually due to their size requirement problem. So, an advanced indentation technique has been developed as a potential method for non-destructive testing of in-field structures. This technique measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation such as yield strength, tensile strength and work-hardening index. Also indentation technique can evaluate a residual stress based on the concept that indentation load-depth curves were shifted with the direction and the magnitude of residual stress applied to materials. In this study, we characterized the tensile properties and welding residual stress of various industrial facilities through the new techniques, and the results are introduced and discussed.

  • PDF

비파괴 시험기법을 이용한 록볼트의 건전도 평가(I) -수치해석 및 실험적 적용성 평가- (Estimation of Rockbolt Integrity by Using Non-Destructive Testing Techniques(I) -Numerical and Experimental of Applicability-)

  • 이종섭;이용준;엄태원;한신인;이인모
    • 한국터널지하공간학회 논문집
    • /
    • 제8권1호
    • /
    • pp.3-12
    • /
    • 2006
  • 본 연구의 목적은 록볼트의 건전도를 평가하기 위하여 록볼트의 비파피시험을 기술하고 바파괴시험의 적용성을 조사하는 것이다. 록볼트 자체와 그라우팅제를 포함한 록볼트의 건전도를 평가하기 위하여, 수치해석 및 실험적 방법을 이용한 두가지 방법이 적용되었다. 수치해석 방법에서는 분석은 DISPERSE 프로그램을 이용하여 록볼트의 분산선도를 해석하였다. 분산선도 곡선은 지중근입되어 있는 록볼트에 대한 그라우팅제의 두께와 강성에 대한 영향을 보여준다. 이로 부터 록볼트의 건전도 시험을 위한 최적의 주파수를 추정할 수 있으며, 그 결과 L(1, 0) 모드에서 20~120kHz가 최적의 주파수로 산정되었다. 실험적 방법에서는 실험실에서 사료를 제작하여 파괴 및 비파괴시험을 실시하였다. 비파괴 실험에서는 타격을 이용한 저주파수 모드와 초음파 트랜스듀서를 이용한 고주파수 모드를 통하여 록볼트의 상태를 조사할 수 있다. 실험실에서 수행된 비파괴실험으로부터, 유도파는 주변의 그라우팅제의 강도가 증가하거나 (또는 증가하고) 결함부 영역이 증가할 때 감쇠가 커짐을 알 수 있었다. 그리고 인발시험으로부터 록볼트의 극한지지력을 추정하였다. 본 연구는 록볼트의 건전도 평가에 비파괴시험이 매우 유용한 방법임을 보여준다.

  • PDF