Browse > Article
http://dx.doi.org/10.12989/sem.2021.77.5.637

Non-destructive evaluation of steel and GFRP reinforced beams using AE and DIC techniques  

Sharma, Gaurav (Civil Engineering Department, Thapar Institute of Engineering and Technology)
Sharma, Shruti (Civil Engineering Department, Thapar Institute of Engineering and Technology)
Sharma, Sandeep K. (Mechanical Engineering Department, Thapar Institute of Engineering and Technology)
Publication Information
Structural Engineering and Mechanics / v.77, no.5, 2021 , pp. 637-650 More about this Journal
Abstract
The paper presents an investigation of the widely varying mechanical performance and behaviour of steel and Glass Fibre Reinforced Polymer (GFRP) reinforced concrete beams using non-destructive techniques of Acoustic Emission (AE) and Digital Image Correlation (DIC) under four-point bending. Laboratory experiments are performed on both differently reinforced concrete beams with 0.33%, 0.52% and 1.11% of tension reinforcement against balanced section. The results show that the ultimate load-carrying capacity increases with an increase in tensile reinforcement in both cases. In addition to that, AE waveform parameters of amplitude and number of AE hits successfully correlates and picks up the divergent mechanism of cracking initiation and progression of failure in steel reinforced and GFRP reinforced concrete beams. AE activity is about 20-30% more in GFRP-RC beams as compared to steel-RC beams. It was primarily due to the lower modulus of elasticity of GFRP bars leading to much larger ductility and deflections as compared to steel-RC beams. Furthermore, AE XY event plots and longitudinal strain profiles using DIC gives an online and real-time visual display of progressive AE activity and strains respectively to efficaciously depict the crack evolution and their advancement in steel-RC and GFRP-RC beams which show a close matching with the micro-and macro-cracks visually observed in the actual beams at various stages of loading.
Keywords
acoustic emission; AE hits; flexure; image correlation; strains; cracks;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Dunn, S.E., Young, J.D., Hartt, W.H. and Brown, R.P. (1984), "Acoustic emission characterization of corrosion-induced damage in reinforced concrete", Corros., 40(7), 339-343. https://doi.org/10.5006/1.3593933.   DOI
2 Dutton, M., Take, W.A. and Hoult, N.A. (2013), "Curvature monitoring of beams using digital image correlation", J. Bridge Eng., 19(3), 05013001. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000538.   DOI
3 El-Hacha, R., Mirmiran, A., Cook, A. and Rizkalla, S. (2010), "Effectiveness of surface-applied corrosion inhibitors for concrete bridges", J. Mater. Civil Eng., 23(3), 271-280. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000163.   DOI
4 Fowler, D.W. (1999), "Polymers in concrete: a vision for the 21st century", Cement Concrete Compos., 2(5-6), 449-452. https://doi.org/10.1016/S0958-9465(99)00032-3.   DOI
5 Prem, P.R. and Murthy, A.R. (2017), "Acoustic emission monitoring of reinforced concrete beams subjected to four-point-bending", Appl. Acoust., 117(1), 28-38. https://doi.org/10.1016/j.apacoust.2016.08.006.   DOI
6 Saleh, Z., Goldston, M., Remennikov, A.M. and Sheikh, M.N. (2019), "Flexural design of GFRP bar reinforced concrete beams: An appraisal of code recommendations", J. Build. Eng., 25, 100794. https://doi.org/10.1016/j.jobe.2019.100794.   DOI
7 Gholizadeh, S., Leman, Z. and Baharudin, B.T.H.T. (2015), "A review of the application of acoustic emission technique in engineering", Struct. Eng. Mech., 54(6), 1075-1095. https://doi.org/10.12989/sem.2015.54.6.1075.   DOI
8 Giannaros, P., Kanellopoulos, A. and Al-Tabbaa, A. (2016), "Sealing of cracks in cement using microencapsulated sodium silicate", Smart Mater. Struct., 25(8), 084005. https://doi.org/10.1088/0964-1726/25/8/084005.   DOI
9 Russ, J.C. (2016), The Image Processing Handbook, 7 th Edition, CRC Press and Taylor & Francis Group, Boca Raton, Florida, USA.
10 Saikia, B., Kumar, P., Thomas, J., Rao, K.N. and Ramaswamy, A. (2007), "Strength and serviceability performance of beams reinforced with GFRP bars in flexure", Constr. Build. Mater., 21(8), 1709-1719. https://doi.org/10.1016/j.conbuildmat.2006.05.021.   DOI
11 Shah, S.G. and Kishen, J.C. (2011), "fracture properties of concrete-concrete interfaces using digital image correlation", Exp. Mech., 51(3), 303-313. http://dx.doi.org/10.1590/S1679-78252014000200011.   DOI
12 Sharma, A., Sharma, S. Sharma, S. and Mukherjee, A. (2015), "Ultrasonic guided waves for monitoring corrosion of FRP wrapped concrete structures", Constr. Build. Mater., 96(10), 690-702. https://doi.org/10.1016/j.conbuildmat.2015.08.08.   DOI
13 Sharma, A., Sharma, S., Sharma, S. and Mukherjee, A. (2018), "Investigation of deterioration in corroding reinforced concrete beams using active and passive techniques", Constr. Build. Mater., 161(1), 555-569. https://doi.org/10.1016/j.conbuildmat.2017.11.165.   DOI
14 Sharma, A., Sharma, S., Sharma, S. and Mukherjee, A. (2018), "Monitoring invisible corrosion in concrete using a combination of wave propagation techniques", Cement Concrete Compos., 90(1), 89-99. https://doi.org/10.1016/j.cemconcomp.2018.03.014.   DOI
15 Goldston, M., Remennikov, A. and Sheikh, M.N. (2016), "Experimental investigation of the behaviour of concrete beams reinforced with GFRP bars under static and impact loading", Eng. Struct., 113, 220-232. https://doi.org/10.1016/j.engstruct.2016.01.044.   DOI
16 Goldston, M.V., Remennikov, A. and Sheikh, M.N. (2017), "Flexural behavior of GFRP reinforced high strength and ultrahigh strength concrete beams", Constr. Build. Mater., 131, 606-617. http://dx.doi.org/10.1016/j.conbuildmat.2016.11.094.   DOI
17 Gu, L. and Meng, X.H. (2016), "Review on research and application of stainless steel-reinforced concrete", Proceedings of the International Conference on Mechatronics, Manufacturing and Materials Engineering. Shenyang, China, July. https://doi.org/10.1051/matecconf/20166303003.   DOI
18 Gudonis, E., Timinskas, E., Gribniak, V., Kaklauskas, G., Arnautov A.K. and Tamulenas,V. (2013), "FRP reinforcement for concrete structures: A state-of-the-art review of application and design", Eng. Struct. Technol., 5(4), 147-158. https://doi.org/10.3846/2029882X.2014.889274.   DOI
19 Abouhussien, A.A. and Hassan, A.A. (2015), "Evaluation of damage progression in concrete structures due to reinforcing steel corrosion using acoustic emission monitoring", J. Civil Struct. Hlth. Monit., 5(5), 751-765. https://doi.org/10.1007/s13349-015-0144-5.   DOI
20 ACI 318 (2008), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, MI, USA.
21 Yoneyama, S. and Ueda, H. (2012), "Bridge deflection measurement using digital image correlation with camera movement correction", Mater. Tran., 53(2), 285-290. https://doi.org/10.2320/matertrans.I-M2011843.   DOI
22 Sonnenschein, R., Gajdosova, K. and Holly, I. (2016), "FRP composites and their using in the construction of bridges", Procedia Eng., 161(1), 477-482. https://doi.org/10.1016/j.proeng.2016.08.665.   DOI
23 Stankiewicz, A., Szczygiel, I. and Szczygiel, B. (2013), "Selfhealing coatings in anti-corrosion applications", J. Mater. Sci., 48(23), 8041-8051. https://doi.org/10.1007/s10853-013-7616-y.   DOI
24 Verbruggen, S., Aggelis, D.G., Tysmans, T. and Wastiels, J. (2014), "Bending of beams externally reinforced with TRC and CFRP monitored by DIC and AE", Compos. Struct., 112, 113-121. https://doi.org/10.1016/j.compstruct.2014.02.006.   DOI
25 Hensher, D. (1993), Fibre-Reinforced-Plastic (FRP) Reinforcement for Concrete Structures, 1 st Edition, Elsevier Science, Amsterdam, Netherlands. https://doi.org/10.1016/C2009-0-09136-3.   DOI
26 Hosseini, S.A., Shabakhty, N. and Mahini, S.S. (2015), "Correlation between chloride-induced corrosion initiation and time to cover cracking in RC Structures", Struct. Eng. Mech., 56(2), 257-273. https://doi.org/10.12989/sem.2015.56.2.257.   DOI
27 Ascione, L., Mancusi, G. and Spadea, S. (2010), "Flexural behavior of concrete beams reinforced with GFRP bars", Strain, 46(5), 460-469. https://doi.org/10.1111/j.1475-1305.2009.00662.x.   DOI
28 ACI 440.1R-06 (2006), Guide for the Design and Construction of Concrete Reinforced with FRP Bar, American Concrete Institute, Farmington Hills, MI, USA.
29 Aggelis, D.G., Verbruggen, S., Tsangouri, E., Tysmans, T. and Van-Hemelrijck, D. (2013), "Characterization of mechanical performance of concrete beams with external reinforcement by acoustic emission and digital image correlation", Constr. Build. Mater., 47(1), 1037-1045. https://doi.org/10.1016/j.conbuildmat.2013.06.005.   DOI
30 Aldahdooh, M.A.A., Bunnori, N.M. and Johari, M.M. (2013), "Damage evaluation of reinforced concrete beams with varying thickness using the acoustic emission technique", Constr. Build. Mater., 44(1), 812-821. https://doi.org/10.1016/j.conbuildmat.2012.11.099.   DOI
31 ASTM D7205 (2006), Standard Test Method for Tensile Properties of Fiber Reinforced Polymer Matrix Composite Bars, ASTM International, West Conshohocken, Pennsylvania, USA.
32 Badawi, M. and Soudki, K. (2005), "Control of corrosion-induced damage in reinforced concrete beams using carbon fiberreinforced polymer laminates", J. Compos. Constr., 9(2), 195-201. https://doi.org/10.1061/(asce)1090-0268(2005)9:2(195).   DOI
33 Blaber, J., Adair, B. and Antoniou, A. (2014), "Ncorr open-source 2D digital image correlation Matlab software", Exp. Mech., 55(6), 1105-1122. https://doi.org/10.1007/s11340-015-0009-1.   DOI
34 Bowness, D., Lock, A.C., Richards, D.J. and Powrie, W. (2005), "Innovative remote video monitoring of railway track displacements, In Applied Mechanics and Materials", Tran. Tech. Publ., 3(1), 417-422. https://doi.org/10.4028/www.scientific.net/AMM.3-4.417.   DOI
35 Kuntz., M. Jolin, M., Bastien, J., Perez, F. and Hild, F. (2006), "Digital image correlation analysis of crack behavior in a reinforced concrete beam during a load test", Can. J. Civil Eng., 33(11), 1418-1425. https://doi.org/10.1139/l06-106.   DOI
36 Hoult, N.A., Dutton, M., Hoag, A. and Take, W.A. (2016), "Measuring crack movement in reinforced concrete using digital image correlation: Overview and application to shear slip measurements", Proc. IEEE, 104(8), 1561-1574. https://doi.org/10.1109/JPROC.2016.2535157.   DOI
37 IS 10262 (2009), Indian Standard Code for Concrete Mix Proportioning Guidelines (First Revision), Bureau of Indian Standards, New Delhi, India.
38 IS 1708 (2008), High Strength Deformed Steel Bars and Wires for Concrete Reinforcement-Specification, Bureau of Indian Standards, New Delhi, India.
39 Krasniqi, C., Kabashi, N., Krasniqi, E. and Kaqi, V. (2018), "Comparison of the behavior of GFRP reinforced concrete beams with conventional steel bars", Pollack Periodica, 13(3), 141-150. https://doi.org/10.1556/606.2018.13.3.14.   DOI
40 Kumar, A., Vishnuvardhan, S., Murthy, A.R. and Raghava, G. (2019), "Tensile and fracture characterization using a simplified digital image correlation test set-up", Struct. Eng. Mech., 69(4), 467-477. https://doi.org/10.12989/sem.2019.69.4.467.   DOI
41 Manning, D.G. (1998), "Corrosion performance of epoxy-coated reinforcing steel: North American experience", Constr. Build. Mater., 10(5), 349-365. https://doi.org/10.1016/0950-0618(95)00028-3.   DOI
42 Nayak, A.N., Kumari, A. and Swain, R.B. (2018), "Strengthening of RC beams using externally bonded fibre reinforced polymer composites", Struct., 14(6), 137-152. https://doi.org/10.1016/j.istruc.2018.03.004.   DOI
43 De Sutter, S., Verbruggen, S., Tysmans, T. and Aggelis, D.G. (2017), "Fracture monitoring of light weight composite concrete beams", Compos. Struct., 167, 11-19. https://doi.org/10.1016/j.compstruct.2017.01.024.   DOI
44 Ohno, K. and Ohtsu, M. (2010), "Crack classification in concrete based on acoustic emission", Constr. Build. Mater., 24(12), 2339-2346. https://doi.org/10.1016/j.conbuildmat.2010.05.004.   DOI
45 Ohtsu, M. and Tomoda, Y. (2007), "Corrosion process in reinforced concrete identified by acoustic emission", Mater. Tran., 48(6), 1184-1189. https://doi.org/10.2320/matertrans.IMRA2007844.   DOI
46 Ohtsu, M. and Uddin, F.A. (2008), "Mechanisms of corrosioninduced cracks in concrete at meso-and macro-scales", J. Adv. Concrete Technol., 6(3), 419-429. https://doi.org/10.3151/jact.6.419.   DOI
47 Perdomo, M.E., Picon, R., Marante, M.E., Hild, F., Roux, S. and Florez-Lopez, J. (2013), "Experimental analysis and mathematical modeling of fracture in RC elements with any aspect ratio", Eng. Struct., 46, 407-416. https://doi.org/10.1016/j.engstruct.2012.07.005.   DOI
48 Ohtsu, M., Mori, K. and Kawasaki, Y. (2011), "Corrosion process and mechanisms of corrosion‐induced cracks in reinforced concrete identified by AE analysis", Strain, 47, 179-186. https://doi.org/10.1111/j.1475-1305.2010.00754.x.   DOI
49 Brachman, R.W.I., McLeod, H.A., Moore, I.D. and Take, W.A. (2010), "Three-dimensional ground displacements from static pipe bursting in stiff clay", Can. Geotech. J., 47(4), 439-450. https://doi.org/10.1139/T09-118.   DOI
50 Bruck, H.A., McNeill, S.R., Sutton, M.A. and Peters, W.H. (1989), "Digital image correlation using Newton-Raphson method of partial differential correction", Exp. Mech., 29(3), 261-267. https://doi.org/10.1007/BF02321405.   DOI