DOI QR코드

DOI QR Code

A Review of the Applications of Spectroscopy for the Detection of Microbial Contaminations and Defects in Agro Foods

  • Kandpal, Lalit Mohan (Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University) ;
  • Cho, Byoung-Kwan (Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University)
  • Received : 2014.08.13
  • Accepted : 2014.08.20
  • Published : 2014.09.01

Abstract

Recently, spectroscopy has emerged as a potential tool for quality evaluation of numerous food and agricultural products because it provides information regarding both spectral distribution and image features of the sample (i.e., hyperspectral imaging). Spectroscopic techniques reveal hidden information regarding the sample and do so in a non-destructive manner. This review describes the various approaches of spectroscopic modalities, especially hyperspectroscopy and vibrational spectroscopies (i.e., Raman spectroscopy and Fourier transform near infrared spectroscopy) combined with chemometrics for the non-destructive assessment of contaminations and defects in agro-food products.

Keywords

Acknowledgement

Supported by : Ministry of Agriculture, Food and Rural Affairs (MAFRA)

References

  1. Alexandrakis, D., Downey, G and A. G. M. Scannell. 2012. Rapid non-destructive detection of spoilage of intact chicken breast muscle using Near-infrared and Fourier Transform Mid-infrared spectroscopy and multivariate statistics. Food Bioprocess Technology, 5:338-347. https://doi.org/10.1007/s11947-009-0298-4
  2. Al-Holy, M. A., Lin, Mengshi, L., Cavinato, A. G and B. A. Rasco. 2006. The use of Fourier transform infrared spectroscopy to differentiate Escherichia coli O157:H7 form other bacteria inoculated into apple juice. Food Microbiology, 23:162-168. https://doi.org/10.1016/j.fm.2005.01.017
  3. Al-Qadiri, H. M., Lin, M., Cavinato, A. G and B. A. Rasco. 2006. Fourier transform infrared spectroscopy, detection and identification of Escherichia coli O157:H7 and Alicyclobacillus strains in apple juice. International Journal of Food Microbiology, 111:73-80. https://doi.org/10.1016/j.ijfoodmicro.2006.05.004
  4. Amigo, J. M., Marti, I and A. Gowen. 2013. Hyperspectral imaging and Chemometrics: A perfect combination for the analysis of food structure, composition and quality. Data Handling in Science & Technology, 28:343-370. https://doi.org/10.1016/B978-0-444-59528-7.00009-0
  5. Ammor, M. S., Argyri, A and G. E. Nychas. 2009. Rapid monitoring of the spoilage of minced beef stored under conventionally and active packaging conditions using Fourier transform infrared spectroscopy in tandem with chemometrics. Meat Science, 81:507-514. https://doi.org/10.1016/j.meatsci.2008.10.015
  6. Andersen, W. C., Turnipseed, S. B., Karbiwnyk, C. M., Clark, S. B., Madson, M. R., Gieseker, C. M., Miller, R. A., Rummel, N. G and R. Reimschuessel. 2008. Determination and confirmation of melamine residues in catfish, trout, tilapia, salmon, and shrimp by liquid chromatography with tandem mass spectroscopy. Agricultural and Food Chemistry, 56:4340-4347. https://doi.org/10.1021/jf800295z
  7. Argyri, A. A., Jarvis, R. M., Wedge, D., Xu, Y. Panagou, E. Z., Goodacre, R and G. E. Nychas. 2011. A comparison of Raman and FT-IR spectroscopy for the prediction of meat spoilage. Food Control, 29:461-470.
  8. Argyri, A. A., Panagou, E. Z., Tarantilis, P. A., Polysiou, M and G. J. E. Nychas. 2010. Rapid qualitative and quantitative detection of beef fillets spoilage based on Fourier transform infrared spectroscopy data and artificial neural networks, Sensors and Actuators B, 145:146-154. https://doi.org/10.1016/j.snb.2009.11.052
  9. Ariana, D. P and R. Lu. 2010. Hyperspectral waveband selection for internal defect detection of pickling cucumbers and whole pickles. Computers and Electronics in Agriculture, 74:137-144. https://doi.org/10.1016/j.compag.2010.07.008
  10. Ariana, D. P and R. Lu. 2008. Quality evaluation of pickling cucumbers using hyperspectral reflectance and transmittance imaging-Part II. Performance of a prototype. Journal of Food Engineering, 2:152-160.
  11. Ariana, D. P., Lu, R and D. E. Guyer. 2006. Near-infrared reflectance imaging for detection of bruises on pickling cucumbers. Computers and Electronics in Agriculture, 53:60-70. https://doi.org/10.1016/j.compag.2006.04.001
  12. Balasundaram, D., Burks, T. F., Bulanon, D. M., Schubert, T and W. S. Lee. 2009. Spectral reflectance characteristics of citrus canker and other peel conditions of grapefruit. Postharvest Biology and Technology, 51(2):220-226. https://doi.org/10.1016/j.postharvbio.2008.07.014
  13. Barbin, D. F., ElMasry, G., Sun, D. W., Allen, P and N. Morsy. 2013. Non-destructive assessment of microbial contamination in porcine meat using NIR hyperspectral imaging. Innovative Food Science & Emerging Technologies, 17:180-191. https://doi.org/10.1016/j.ifset.2012.11.001
  14. Bauriegel, E and W. B. Herppich. 2014. Hyperspectral and chlorophyll fluorescence imaging for early detection of plant diseases with special reference to Fusarium spec. infections on wheat. Agriculture, 4:32-57. https://doi.org/10.3390/agriculture4010032
  15. Bauriegel, E., Giebel, A., Schmidt, U and W. B. Herppich. Early detection of Fusarium infection in wheat using hyper-spectral imaging. 2011. Computers and Electronics in Agriculture, 75:304-312. https://doi.org/10.1016/j.compag.2010.12.006
  16. Beullens. K., Kirsanov, D., Irudayaraj, J., Rudnitskaya, A., Legin, A., Nicolai, B. M and J. Lammertyn. 2006. The electronic and ATR-FTIR for rapid detection of sugars and acids in tomatoes. Sensors and Actuators, 116: 107-115. https://doi.org/10.1016/j.snb.2005.11.084
  17. Boken, J., Dalela, S and D. Kumar. 2013. Detection of Pathogenic E. Coli Strain Robust Silver and Gold Nanoparticles. Chemical Engineering and Process Technology, 4:2157-7048.
  18. Borch, E., Kant-Muermans, M. L and Y. Blixt. 1996. Bacterial spoilage of meat and cured meat products. International Journal of Food Microbiology, 33:103-120. https://doi.org/10.1016/0168-1605(96)01135-X
  19. Boydas, M. G., Ozbek, I. Y and M. Kara. 2014. An efficient laser sensor system for apple impact bruise volume estimation. Postharvest Biology and Technology, 89: 49-55. https://doi.org/10.1016/j.postharvbio.2013.11.005
  20. Brown, C. A., Jeong, K. S., Poppenga, R. H., Puschner, B., Miller, D. M., Ellis, A. E., Kang, K., Sum, S., Cistola, A. M and S. A. Brown. 2007. Outbreaks of renal failure associated with melamine and cyanuric acid in dogs and cats in 2004 and 2007, Journal of Veterinary Diagnostic Investigation, 19:525-531. https://doi.org/10.1177/104063870701900510
  21. Burgula, Y., Khali, D., Kim, S., Krishnan, S. S., Cousin, M. A., Gore, J. P., Reuhs, B. L and L. J. Mauer. 2007. Review of mid-infrared Fourier Transform-infrared spectroscopy applications for bacterial detection. Journal of Rapid Methods and Automation in Microbiology, 15:146-175. https://doi.org/10.1111/j.1745-4581.2007.00078.x
  22. Chao, K., Nou, X., Liu, Y., Kim, M. S., Chan, D. E., Yang, C. C., Patel, J and M. Sharma. 2008. Detection of fecal/ ingesta contaminations on poultry processing equipment surfaces by visible and near-infrared reflectance spectroscopy. Applied Engineering in Agriculture, 24(11):49-55. https://doi.org/10.13031/2013.24148
  23. Cheng, X., Chen, Y. R., Tao, Y., Wang, C. Y., Kim, M. S and A. M. Lefcourt. 2004. A novel integrated PCA and FLD method on hyperspectral image feature extraction for cucumber chilling damage inspection. Transactions of the ASAE, 47:1313-1320. https://doi.org/10.13031/2013.16565
  24. Cho, B. K., Kim, M. S., Beak, I. S., Kim, D. Y., Lee, W. H., Lim, J., Bae, H and Y. S. Kim. 2013. Detection of cuticle defects on cherry tomatoes using hyperspectral fluorescence imagery. Postharvest Biology and Technology, 76:40-49. https://doi.org/10.1016/j.postharvbio.2012.09.002
  25. Davis, R., Irudayaraj, J., Reuhs, B. L and L. J. Mauer. 2010. Detection of E. coli O157:H7 form ground beef using Fourier Transform Infrared (FT-IR) spectroscopy and Chemometrics. Journal of Food Science, 75(6):340-6. https://doi.org/10.1111/j.1750-3841.2010.01686.x
  26. Champiat, D., Matas, N., Monfort, B and H. Fraass. 2001. Applications of biochemiluminescence of HACCP. Journal of Luminescence, 16:193-198. https://doi.org/10.1002/bio.647
  27. Draganova, T., Daskalov, P and R. Tsonev. 2010. An approach for identifying of fusarium infected maize grains by spectral analysis in the visible and near infrared region, SMICA models, parametric and neural classifiers. International Journal of Bioautomation, 14(2):119-128.
  28. Duarte, I. F., Barros, A., Delgadillo, I., Almeida, C and A. M. Gil. 2002. Application of FTIR spectroscopy for the quantification of sugars in mango juice as a function of ripening. Journal of Agricultural and Food Chemistry, 50:3014-3111.
  29. Ellis, D. I., Broadhurst D., Kell, D. B., Rowland, J. J and R. Goodacre. 2002. Rapid and quantitative detection of the microbial spoilage of meat by Fourier Transform spectroscopy and Machine learning. Applied and Environmental Microbiology. 68:2822-2828. https://doi.org/10.1128/AEM.68.6.2822-2828.2002
  30. Ellis, D and R. Goodacre. 2001. Rapid and quantitative detection of the microbial spoilage of muscle foods: current status and future trends. Trends in Food Science and Technology, 12:414-424. https://doi.org/10.1016/S0924-2244(02)00019-5
  31. Elmasry, G., Wang, N and C. Vigneault. 2009. Detecting chilling injury in Red Delicious apple using hyperspectral imaging and neural networks. Postharvest Biology and Technology, 52:1-8. https://doi.org/10.1016/j.postharvbio.2008.11.008
  32. Ercolini, D., Russo, F., Torrieri, E., Masi, P and F. Villani. 2006. Changes in the spoilage-related microbiota of beef during refrigerated storage under different packing conditions, Applied and Environmental Microbiology, 72:4663-4671. https://doi.org/10.1128/AEM.00468-06
  33. Feng, Y. Z and D. W. Sun. 2013. Determination of total count (TVC) in chicken breast fillets by near-infrared hyperspectral imaging and spectroscopic transforms. Talanta, 105:244-249. https://doi.org/10.1016/j.talanta.2012.11.042
  34. Fuller, G., Spooncer, W. W., King, A. D., Shade, J and B. Mackey. 1977. Survey of aflatoxins in California tree nuts. Journal of the American Oil Chemists Society, 54: 231-234. https://doi.org/10.1007/BF02894415
  35. Gamble, J., Harker, F. R., Jaeger, S. R., White, A., Bava, C., Beresford, M., Stubbings, B., Wohlers, M., Hofman, P. J., Marques, R and A. Woolf. 2010. The impact of dry matter, ripeness and internal defects on consumer perceptions of avocado quality and intentions to purchase. Postharvest Biology and Technology, 57: 35-43. https://doi.org/10.1016/j.postharvbio.2010.01.001
  36. Gloria, E. M., Ciacco, C. F., Lopes-Filho, J. F., Ericsson, C and S. S. Zocchi. 2006. Distribution of aflatoxin contamination in maize samples. Cienciae Tecnologia de Alimentos, 24:71-75.
  37. Gossner, C. M. E., Schlundt, J., Embarek, P. B., Hird, S., Lo-Fo-Wong, D., Betran, J. J. O., Teoh, K. N and A. Tritsher. 2009. The melamine incident: Implications for international food and feed safety. Environmental Health Perspectives, 117(12):1803-1808. https://doi.org/10.1289/ehp.0900949
  38. Gowen, A. A., O'Donnell, C. P., Cullen, P. J., Downey, G and J. M. Frias. 2007. Hyperspectral imaging-an emerging process analytical tool for food quality and safety control, Food Science and Technology, 18:590-598. https://doi.org/10.1016/j.tifs.2007.06.001
  39. Gowen, A. A., Taghizadeh, M and C. P. O'Donnell. 2009. Identification of mushrooms subjected to freeze damage using hyperspectral imaging. Journal of Food Engineering, 93:7-12. https://doi.org/10.1016/j.jfoodeng.2008.12.021
  40. Grau, R., Sanchez, A. J., Giron, J., Iborra, E., Fuentes, A and J. M. Barat. 2011. Nondestructive assessment of freshness in packaged sliced chicken breasts using SW-NIR spectroscopy. Food Research International, 44:331-337. https://doi.org/10.1016/j.foodres.2010.10.011
  41. Huang, M., Wan, X and M. Zhang. 2013. Detection of insect damaged vegetable soybean using hyperspectral transmittance image. Journal of Food Engineering, 116:45-49. https://doi.org/10.1016/j.jfoodeng.2012.11.014
  42. Huang, M., Wan, X., Zhang, M and Q. Zhu. 2013. Detection of insect-damaged vegetable soybeans using hyperspectral transmittance image. Journal of Food Engineering, 116:45-49. https://doi.org/10.1016/j.jfoodeng.2012.11.014
  43. Hung, H., Liu, L and M. O. Ngadi. 2014. Recent developments in hyperspectral imaging for assessment of food quality and safety. Sensors, 14:7248-7276. https://doi.org/10.3390/s140407248
  44. Jongenburger, I., Reij, M. W., Boer, E. P. J., Gorris, L. G. M and M. H. Zwietering. 2010. Factors influencing the accuracy of the plating method used to enumerate low numbers of viable micro-organisms in food. International Journal of Food Microbiology, 143:32-40. https://doi.org/10.1016/j.ijfoodmicro.2010.07.025
  45. Kim, M. S., Chen, Y. R and P. M. Mehl. 2001. Hyperspectral reflectance and fluorescence imaging system for food quality and safety. Transactions of the ASAE, 44(3): 721-729.
  46. Kim, M. S., Lefcourt, A. M., Chen, Y. R., Chan, D. E and K. Chao. 2002. Multispectral detection of fecal contamination on apples based on hyperspectral imagery: Part II. Application of hyperspectral fluorescence imaging. Transactions of the ASAE, 45:2039-2047.
  47. Kim, T., Cho, B. K and M. S. Kim. 2010. Emission filter design to detect poultry skin tumors using fluorescence hyperspectral imaging. Revista Colombiana de Ciencias Pecuarias, 23:9-16.
  48. Knox, B. L., Van Laack, R. L. J. M and P. M. Davidson. 2008. Relationship between ultimate pH and microbial, chemical, and physical characteristics of vacuumpackaged pork loins. Journal of Food Science, 73(3): 104-110.
  49. Laursen, B. G., Byrne, D. V., Kirkegaard, J. B and J. J. Leisner. 2008. Lactic acid bacteria associated with a heatprocessed pork product and sources of variation affecting chemical indices of spoilage and sensory characteristics. Journal of Applied Microbiology, 1364-5072.
  50. Lee, K. M., T. J. Herrman, C. Nansen and U. Yun. 2013. Application of Raman spectroscopy for qualitative and quantitative detection of fumonisins in ground maize samples. International Journal of Regulatory Science, 1:1-14.
  51. Li. J., Rao, X and Y. Ying. 2011. Detection of common defects on oranges using hyperspectral reflectance imaging. Computers and Electronics in Agriculture, 78:38-48. https://doi.org/10.1016/j.compag.2011.05.010
  52. Liu, Y., Todd, E. E. D., Zhang, Q., Shi, Z. R and X. J. Liu. 2012. Recent developments in the detection of melamine. Biomedicine and Biotechnology, 13(7):525-532.
  53. Lu, C., Xiang, B., Hao, G., Xu, J., Wang, Z and C. Chen. 2009. Rapid detection of melamine in milk powder by near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 17:59-67. https://doi.org/10.1255/jnirs.829
  54. Lu, R. 2003. Detection of bruises on apples using Near- Infrared hyperspectral imaging. Transactions of the ASAE, 46(2):523-530.
  55. Mehl, P. M., Chao, K., Kim, M and Y. R. Chen. 2002. Detection of defects on selected apple cultivars using Hyperspectral and multispectral image analysis. Transactions of the ASAE, 18:219-226.
  56. Mehl, P. M., Chen, Y. R., Kim, M. S and D. E. Chan. 2004. Development of hyperspectral imaging technique for the detection of apple surface defects and contaminations. Journal of Food Engineering, 61:67-81. https://doi.org/10.1016/S0260-8774(03)00188-2
  57. Meisel, S., Stockel, S., Elschner, M., Melzer, F., Rosch, P and J. Popp. 2012. Raman spectroscopy as a potential tool for detection of Brucella spp. in milk. Applied and Environmental Microbiology, 78:5575-5583. https://doi.org/10.1128/AEM.00637-12
  58. Meisel, S., Stockel, S., Elschner, M., Melzer, F., Rosch, P and J. Popp. 2011. Assessment of two isolation techniques for bacteria in milk towards their compatibility with Raman spectroscopy. Analyst, 136:4997-5005. https://doi.org/10.1039/c1an15761b
  59. Miao, H., Fan, S., Wu, Y. N., Zhang, L., Zhou, P. P., Li, J. G., et al. 2009. Simultaneous determination of melamine, ammelide, ammeline, and cyanuric acid in milk and milk products by gas chromatography-tandem mass spectrometry. Biomedical and Environmental Sciences, 22:87-94. https://doi.org/10.1016/S0895-3988(09)60027-1
  60. Miller, A. R., Kelley, T. J and B. D. White. 1995. Nondestructive evaluation of pickling cucumbers using visible-infrared light transmission. Journal of the American Society for Horticultural Science, 120:1063-1068.
  61. Nicolai, B. M., Lotze, E., Peirs, A., Scheerlinck, N and K. l. Theron. 2006. Non-destructive measurement of bitter pit in apple fruit using NIR hyperspectral imaging. Postharvest Biology and Technology, 40:1-6. https://doi.org/10.1016/j.postharvbio.2005.12.006
  62. Park, B., Yoon, S. C., Windham, W. R., Lawrence, K. C., Kim, M. S and K. Chao. 2011. Line-scan hyperspectral imaging for real-time in-line poultry fecal detection. Sensing and Instrumentation for Food Quality and Safety, 5:25-32. https://doi.org/10.1007/s11694-011-9107-7
  63. Qin, J., Burks, T. F., Kim, M. S., Chao, K and M. A. Ritenour. 2008. Citrus canker detection using hyperspectral reflectance imaging and PCA-based image classification method. Sensing and Instrumentation for Food Quality and Safety, 2:168-177. https://doi.org/10.1007/s11694-008-9043-3
  64. Qin, J., Burks, T. F., Ritenour, M. A and W. G. Bonn. 2009. Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. Journal of Food Engineering, 93:183-191. https://doi.org/10.1016/j.jfoodeng.2009.01.014
  65. Reid, L. M., O'Donnel, C. P and G. Downey. 2006. Recent technological advances for the determination of food authenticity. Trends in Food Science & Technology, 17:344-353. https://doi.org/10.1016/j.tifs.2006.01.006
  66. Sankaran, S., Mishra, A., Maja, J. M and R. Ehsani. 2011. Visible-near infrared spectroscopy for detection of Huanglongbing in citrus orchards. Computers and Electronics in Agriculture, 77:127-134. https://doi.org/10.1016/j.compag.2011.03.004
  67. Scheu, P. M., Berghof, K and U. Stahl. 1998. Detection of pathogenic and spoilage micro-organisms in food with the polymerase chain reaction. Food Microbiology, 15:13-31. https://doi.org/10.1006/fmic.1997.0134
  68. Shahin, M. A and S. J. Symons. 2011. Detection of Fusarium damaged kernels in Canada Western Red Spring wheat using visible/near-infrared hyperspectral imaging and principal component analysis. Computers and Electronics in Agriculture, 75:107-112. https://doi.org/10.1016/j.compag.2010.10.004
  69. Shahin, M. A., Symons, S. J and D. W. Hatcher. 2014. Quantification of Mildew Damage Red winter wheat based on spectral characteristics of bulk samples: A comparison of visible-near-infrared imaging and nearinfrared spectroscopy. Food and Bioprocess Technology, 7:224-234. https://doi.org/10.1007/s11947-012-1046-8
  70. Shortwell, O. L and C. W. Hesseltine. 1974. Aflatoxin: Distribution in contaminated corn. Cereal Chemistry, 51:492-499.
  71. Singh, C. B., Jayas, D. S., Paliwal, J and N. D. G. White. 2009. Detection of insect-damaged wheat kernels using near-infrared hyperspectral imaging. Journal of Stored Products Research, 45:151-158. https://doi.org/10.1016/j.jspr.2008.12.002
  72. Siripatrawan, U., Makino, Y., Kawagoe, Y and S. Oshita. 2010. Near infrared spectroscopy integrated with chemometrics for rapid detection of E. coli ATCC 25922 and E. coli K12. Sensors and Actuators B: Chemical, 148:366-370. https://doi.org/10.1016/j.snb.2010.05.024
  73. Siripatrawan, U., Makino, Y., Kawagoe, Y and S. Oshita. 2011. Rapid detection of Escherichia coli contamination in packaged fresh spinach using hyperspectral imaging. Talanta, 85:276-281. https://doi.org/10.1016/j.talanta.2011.03.061
  74. Sirisomboon, C. D., Putthang, R and P. Sirrisomboon. 2013. Application of near infrared spectroscopy to detect aflatoxigenic fungal contamination in rice. Food Control, 33:207-214. https://doi.org/10.1016/j.foodcont.2013.02.034
  75. Steiner, W. E., Brunschweiler, K., Leimbacher, E and R. Schneider. 1992. Aflatoxins and Fluorescence in Brazil nuts and Pistachio Nut. Journal of Agricultural and Food Chemistry, 40:2453-2457. https://doi.org/10.1021/jf00024a022
  76. Tallada, J. G., Wicklow, D. T., Pearson, T. C and P. R. Armstrong. 2011. Detection of fungus-infected corn kernels using Near-Infrared reflectance spectroscopy and color imaging. Transactions of the ASABE, 54: 1151-1158. https://doi.org/10.13031/2013.37090
  77. Thygesen, L. G., Lokke, M. M., Micklander, E and S. B. Engelsen. 2003. Vibrational microspectroscopy of food. Raman vs. FT-IR. Food Science and Technology, 14:50-57. https://doi.org/10.1016/S0924-2244(02)00243-1
  78. Tripathi, S and H. N. Mishra. 2009. A rapid FT-NIR method for estimation of aflatoxin in red chili powder. Food Control, 20:840-846. https://doi.org/10.1016/j.foodcont.2008.11.003
  79. Venkatasami, G and Sowa, J. R. Jr. 2010. A rapid, acetonitrile-free, HPLC method for determination of melamine in infant formula. Analytica Chimica Acta, 665(2):227-230. https://doi.org/10.1016/j.aca.2010.03.037
  80. Wang, D., Ram, M. S and F. E. Dowell. 2002. Classification of damaged soybean seeds using Near-infrared spectroscopy. Transactions of the ASAE, 45:1943-1948.
  81. Wang, J., Nakano, K., Ohashi, S., Kubota, Y., Takizawa, K and Y. Sasaki. 2011. Detection of external insect infestations in jujube fruit using hyperspectral reflectance imaging. Biosystems Engineering, 108:345-351. https://doi.org/10.1016/j.biosystemseng.2011.01.006
  82. Wang, Q., Haughey, S. A., Sun, Y., Eremin, S. A., Li, Z., Liu, H., et al. 2011. Development of a fluorescence polarization immunoassay for the detection of melamine in milk and milk powder. Analytical and Bioanalytical Chemistry, 399:2275-2284. https://doi.org/10.1007/s00216-010-4599-2
  83. Wang. W and J. Paliwal. 2007. Near-infrared spectroscopy and imaging in food quality and safety. Sensing and Instrumentation for Food Quality and Safety, 1:193-207. https://doi.org/10.1007/s11694-007-9022-0
  84. Wei, X., Liu, F., Qiu, Z., Shao, Y and Y. He. 2013. Ripeness classification of astringent persimmon using hyperspectral imaging technique. Food and Bioprocess Technology, 7:1371-1380.
  85. Williams, P. J., Geladi, P., Britz, T. J and M. Manley. 2012. Investigation of fungal development in maize kernels using NIR hyperspectral imaging and multivariate data analysis. Journal of Cereal Science, 55:272-278. https://doi.org/10.1016/j.jcs.2011.12.003
  86. Woodcock, T., Fagan C. C., O'Donnell, C. P and G. Downey. 2008. Application of Near and Mid-infrared spectroscopy to determine cheese quality and authenticity. Food and Bioprocess Technology, 1:117-129. https://doi.org/10.1007/s11947-007-0033-y
  87. Wu, D and D. Sun. 2013. Advanced application of hyperspectral imaging technology for food quality and safety analysis and assessment: A review-Part 1: Fundamentals. Innovative Food Science and Emerging Technologies, 19:1-14. https://doi.org/10.1016/j.ifset.2013.04.014
  88. Wu, X., Gao, S., Wang, J. S., Wang, H., Huang, Y. W and Y. Zhao. 2012. The surface-enhanced Raman spectra of aflatoxins: spectral analysis, density functional theory calculation, detection and differentiation. Analyst, 137:4226-4234. https://doi.org/10.1039/c2an35378d
  89. Xing, J., Bravo, C., Jancsok, P. T., Ramon, H and J. D. Baerdemaeker. 2005. Detecting bruises on 'Golden Delicious' Apples using hyperspectral imaging with multiple wavebands. Biosystems Engineering, 90(1): 27-36. https://doi.org/10.1016/j.biosystemseng.2004.08.002
  90. Yang, H and J. Irudayaraj. 2003. Rapid detection of foodborne microorganisms on food surface Fourier transform Raman spectroscopy. Journal of Molecular Structure, 646:35-43. https://doi.org/10.1016/S0022-2860(02)00575-6
  91. Yao, H., Hruska, Z., Kincaid, R., Brown, R. L., Bhatnagar, D and T. E. Cleveland. 2013. Detecting maize inoculated with toxigenic and atoxigenic fungal strains with florescence hyperspectral imagery. Biosystems Engineering, 115:125-135. https://doi.org/10.1016/j.biosystemseng.2013.03.006
  92. Yong, H., Zhang, Y., Pereira, A. G., Gomez, A. H and J. Wang. 2005. Nondestructive determination of tomato fruit quality characteristics using Vis/NIR spectroscopy technique. International Journal of Information Technology, 2:1956-9.
  93. Yoon, S. C., Park, B., Lawrence, K. C., Windham, W. R and G. W. Heitschmidt. 2011. Line-scan hyperspectral imaging system for real-time inspection of poultry carcasses with fecal material and ingesta. Computers and Electronics in Agriculture, 79:159-168. https://doi.org/10.1016/j.compag.2011.09.008
  94. Zhang, X. F., Zou, M. Q., Qi, X. H., Liu, F., Zhu, X. H and B. H. Zhao. 2010. Detection of melamine in liquid milk using surface-enhanced Raman scattering spectroscopy. Journal of Raman Spectroscopy, 41:1655-1660. https://doi.org/10.1002/jrs.2629
  95. Zhang, X., Liu, F., He, Y and X. Li. 2012. Application of hyperspectral imaging and chemometric calibrations for variety discrimination of maize seeds. Sensors, 12: 17234-17246. https://doi.org/10.3390/s121217234
  96. Zheng, C., Sun, D and L. Zheng. 2007. Recent developments and applications of image features for food quality evaluation and inspection- a review. Trends in Food Science and Technology, 17:642-655.

Cited by

  1. On-line fresh-cut lettuce quality measurement system using hyperspectral imaging vol.156, 2017, https://doi.org/10.1016/j.biosystemseng.2017.01.005
  2. Fluorescence hyperspectral imaging technique for foreign substance detection on fresh-cut lettuce vol.97, pp.12, 2017, https://doi.org/10.1002/jsfa.8262
  3. Discrimination methods for biological contaminants in fresh-cut lettuce based on VNIR and NIR hyperspectral imaging vol.85, 2017, https://doi.org/10.1016/j.infrared.2017.05.003
  4. Concatenated silicon etalon tunable filter for hyperspectral imaging in the near infrared vol.57, pp.11, 2018, https://doi.org/10.1117/1.OE.57.11.115101