• Title/Summary/Keyword: Non-alcoholic Fatty Liver Disease

Search Result 136, Processing Time 0.034 seconds

Effects of Ethanol Extract of Benincasa Seeds on the Experimental Cellular Model of Nonalcoholic Fatty Liver Disease (동과자 에탄올 추출물이 비알코올성 지방간 세포 모델에 미치는 효과)

  • Choi, Jun-Young;Kim, So-Yeon;Kwun, Min-Jung;Kim, Kyun-Ha;Joo, Myung-Soo;Han, Chang-Woo
    • The Journal of Internal Korean Medicine
    • /
    • v.33 no.4
    • /
    • pp.438-447
    • /
    • 2012
  • Objectives : In this study, we investigated the effect and the underlying mechanism of ethanol extract of Benincasa seeds on a cellular model of non-alcoholic fatty liver disease (NAFLD) established by treating HepG2 cells with palmitate. Methods : We evaluated ethanol extract of Benincasa seeds (EEBS) for its hepatic lipid-lowering potential in fatty acid overloaded HepG2 cells. After incubation in palmitate containing media with or without EEBS, intracellular neutral lipid accumulations were quantified by Nile red staining. We also investigated the effect of EEBS on lipogenesis and ${\beta}$-oxidation. $LXR{\alpha}$-dependent SREBP-1c activation, expression of lipogenic genes, and expression of ${\beta}$-oxidation related genes were determined with or without pretreatment of EEBS. Results : EEBS significantly attenuated palmitate-induced intracellular neutral lipid accumulation in HepG2 cells. EEBS suppressed fatty acid synthesis by inhibiting $LXR{\alpha}$-dependent SREBP-1c activation. EEBS also repressed SREBP-1c mediated induction of lipogenic genes, including ACC, FAS, and SCD-1. However, EEBS had no effect on ${\beta}$-oxidation related CPT-1 and $PPAR{\alpha}$ gene expression. Conclusions : Our results suggest that EEBS has an efficacy to decrease hepatic lipid accumulation, and this effect was mediated by inhibiting the $LXR{\alpha}$-SREBP-1c pathway that leads to expression of lipogenic genes and hepatic steatosis. Therefore, the Benincasa seeds may have a potential clinical application for treatment of this chronic liver disease.

Potential Roles of Hedgehog and Estrogen in Regulating the Progression of Fatty Liver Disease (지방간 진행 조절에 대한 헤지호그와 에스트로겐의 잠재적 역할)

  • Hyun, Jeong-Eun;Jung, Young-Mi
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1795-1803
    • /
    • 2011
  • Non-alcoholic fatty liver disease accompanies the rise in the prevalence of obesity, diabetes and the tendency toward high-fat dietary habits. Specifically, the higher prevalence of non-alcoholic fatty liver disease in men and postmenopausal women seems to be caused by the protective effects of estrogen against liver fibrosis, or lack thereof. There are no effective preventive therapies for liver diseases because the mechanisms underlying the progression of fatty liver diseases to chronic liver diseases and the protective effects of estrogen against fibrogenesis remain unclear. Recently, it has been reported that the hedgehog signaling pathway plays an important role in the progression of chronic liver diseases. Hedgehog, a morphogen regulating embryonic liver development, is expressed in injured livers but not in adult healthy livers. The level of hedgehog expression parallels the stages of liver diseases. Hedgehog induces myofibroblast activation and hepatic progenitor cell proliferation and leads to excessive liver fibrosis, whereas estrogen inhibits the activation of hepatic stellate cells to myofibroblasts and prevents liver fibrosis. Although the mechanism underlying the opposing actions of hedgehog and estrogen on liver fibrosis remain unclear, the suppressive effects of estrogen on the expression of osteopontin, a profibrogenic extracellular matrix protein and cytokine, and the inductive effects of hedgehog on osteopontin transcription suggest that estrogen and hedgehog are associated with liver fibrosis regulation. Therefore, further research on the estrogen-mediated regulatory mechanisms underlying the hedgehog-signaling pathway can identify the mechanism underlying liver fibrogenesis and contribute to developing therapies for preventing the progression of fibrosis to chronic liver diseases.

Effects of Agastachis Herba Extract and Lysimachiae Herba Extract on the Experimental Cellular Model of NFLDs Induced by Palmitic Acid (곽향과 금전초 추출물이 Palmitic acid로 유발된 비알코올성 지방간 세포 모델에 미치는 영향)

  • Lee, Hye-in;Kim, Young-kwang;Lim, Hyeon-chan;Lee, Da-eun;Kim, Eun-ji;Moon, Young-ho
    • The Journal of Internal Korean Medicine
    • /
    • v.39 no.3
    • /
    • pp.302-312
    • /
    • 2018
  • Objectives: This study was performed to investigate the effects of two herbal medicines, Agastachis Herba and Lysimachiae Herba, on a cellular model of non-alcoholic fatty liver diseases (NFLDs). Methods: HepG2 cells were treated with palmitic acid and with various concentrations of Agastachis Herba (AH) or Lysimachiae Herba (LH) extract in water. The lipotoxicity was assessed using EZ-cytox, and the lipoapoptosis was assessed using cell death detection ELISA. Intracellular lipids were measured by oil red O staining. The efficacy of AH and LH on sterol regulatory element-binding transcription factor-1c (SREBP-1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC) in HepG2 cells was measured by reverse transcription polymerase chain reaction (RT-PCR). Results: Both AH and LH extracts increased lipoapoptosis and decreased lipotoxicity and levels of SREBP-1c, ACC, and FAS (SREBP-1c, ACC, and FAS are factors in lipid synthesis). In the oil red O staining experiment, both extracts also reduced intracellular lipid accumulation; in this instance, LH's efficacy was superior to that of AH. Conclusions: According to the results, both AH and LH are likely to contribute to non-alcoholic fatty liver disease, as both interfere with lipid synthesis.

Correlation between Transient Elastography (Fibroscan®) and Ultrasonographic and Computed Tomographic Grading in Pediatric Nonalcoholic Steatohepatitis

  • Lee, Ji Eun;Ko, Kyung Ok;Lim, Jae Woo;Cheon, Eun Jung;Song, Young Hwa;Yoon, Jung Min
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.25 no.3
    • /
    • pp.240-250
    • /
    • 2022
  • Purpose: This study aimed to examine the advantages and usefulness of transient elastography (Fibroscan®) in diagnosing non-alcoholic steatohepatitis in children and adolescents compared to those of abdominal computed tomography and liver ultrasonography. Methods: Forty-six children and adolescent participants aged between 6 and 16 years who underwent transient elastography (Fibroscan®) as well as liver ultrasonography or abdominal computed tomography were included. Thirty-nine participants underwent liver ultrasonography and 11 underwent computed tomography. The physical measurements, blood test results, presence of metabolic syndrome, and the degree of liver steatosis and liver fibrosis were analyzed, and their correlations with transient elastography (Fibroscan®), abdominal computed tomography, and liver ultrasonography, as well as the correlations between examinations, were analyzed. Results: Thirty-six participants (78.3%) were boys, and the mean age was 12.29±2.57 years, with a mean body mass index of 27.88±4.28. In the 46 participants, the mean values for aspartate aminotransferase, alanine aminotransferase, and total bilirubin were 89.87±118.69 IU/L, 138.54±141.79 IU/L, and 0.77±0.61 mg/dL, respectively. Although transient elastography (Fibroscan®) and abdominal computed tomography grading had a statistically significant positive correlation with aspartate aminotransferase and alanine aminotransferase values, the correlations between the results of grading performed by transient elastography (Fibroscan®), abdominal computed tomography, and liver ultrasonography were not statistically. Conclusion: We confirmed that each examination was correlated with the results of some blood tests, suggesting the usefulness and possibility of diagnosis and treatment of steatohepatitis mediated by transient elastography (Fibroscan®) in the department of pediatrics.

Hepatic Lipid Changes in Fatty Liver Rat Model by In Vivo Short-TE 1H-MRS (생체 내 양성자 자기공명분광법을 이용한 지방간 쥐에서 간 지질 변화)

  • Kim, Joo-Yeon;Baek, Hyeon-Man
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.5
    • /
    • pp.623-630
    • /
    • 2018
  • Non-alcoholic fatty liver disease is the most common cause of chronic liver diseases. This study was to characterize early hepatic lipid changes in fatty liver rat model by in vivo short-echo time(TE) $^1H$-MRS(Proton - Magnetic Resonance Spectroscopy). Each the examinations were measured from liver parenchyma in rats at 0, 2, 4, 6, 8 weeks followed by high fat diet, respectively. Significant increase in lipid signals. 0.9, 1.3, 2.3, 2.8, and 5.3 ppm was found in animals with 2 weeks(p<0.01). Therefore, $^1H$-MRS is useful in detecting and characterizing various hepatic lipid alterations as early as 2 weeks for the start high fat diet.

Carrot Juice Administration Decreases Liver Stearoyl-CoA Desaturase 1 and Improves Docosahexaenoic Acid Levels, but Not Steatosis in High Fructose Diet-Fed Weanling Wistar Rats

  • Mahesh, Malleswarapu;Bharathi, Munugala;Reddy, Mooli Raja Gopal;Kumar, Manchiryala Sravan;Putcha, Uday Kumar;Vajreswari, Ayyalasomayajula;Jeyakumar, Shanmugam M.
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.3
    • /
    • pp.171-180
    • /
    • 2016
  • Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases associated with an altered lifestyle, besides genetic factors. The control and management of NAFLD mostly depend on lifestyle modifications, due to the lack of a specific therapeutic approach. In this context, we assessed the effect of carrot juice on the development of high fructose-induced hepatic steatosis. For this purpose, male weanling Wistar rats were divided into 4 groups, fed either a control (Con) or high fructose (HFr) diet of AIN93G composition, with or without carrot juice (CJ) for 8 weeks. At the end of the experimental period, plasma biochemical markers, such as triglycerides, alanine aminotransferase, and ${\beta}$-hydroxy butyrate levels were comparable among the 4 groups. Although, the liver injury marker, aspartate aminotransferase, levels in plasma showed a reduction, hepatic triglycerides levels were not significantly reduced by carrot juice ingestion in the HFr diet-fed rats (HFr-CJ). On the other hand, the key triglyceride synthesis pathway enzyme, hepatic stearoyl-CoA desaturase 1 (SCD1), expression at mRNA level was augmented by carrot juice ingestion, while their protein levels showed a significant reduction, which corroborated with decreased monounsaturated fatty acids (MUFA), particularly palmitoleic (C16:1) and oleic (C18:1) acids. Notably, it also improved the long chain n-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA; C22:6) content of the liver in HFr-CJ. In conclusion, carrot juice ingestion decreased the SCD1-mediated production of MUFA and improved DHA levels in liver, under high fructose diet-fed conditions. However, these changes did not significantly lower the hepatic triglyceride levels.

A mixture of blackberry leaf and fruit extracts decreases fat deposition in HepG2 cells, modifying the gut microbiome

  • Wu, Xuangao;Jin, Bo Ram;Yang, Hye Jeong;Kim, Min Jung;Park, Sunmin
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.3
    • /
    • pp.229-237
    • /
    • 2019
  • More effective treatments are needed for non-alcoholic fatty liver disease (NAFLD). We hypothesized that water extracts of blackberry fruits (BF) and leaves (BL) and their combinations (BFL) reduce fat deposition in HepG2 cells and modulate shor-tchain fatty acids (SCFA) and fecal bacteria in vitro. HepG2 cells were treated with BF, BL, BFL1:2, and BFL1:3 for 1 h, and 0.5 mM palmitate was added to the cells. Moreover, low ($30{\mu}g/mL$) and high doses ($90{\mu}g/mL$) of BL and BF were applied to fecal bacteria in vitro, and SCFA was measured by GC. BL, BF, BFL1:2, and BFL1:3 reduced triglyceride deposition in the cells in a dose-dependent manner, and BFL1:2 and BFL1:3 had a stronger effect than BF. The content of malondialdehyde, an index of oxidative stress, was also reduced in BL, BF, and BFL1:2 with increasing superoxide dismutase and glutathione peroxidase activities. The mRNA expression of acetyl CoA carboxylase, fatty acid synthase, and sterol regulatory element-binding protein-1c was reduced in BL, BF, BFL1:2, and BFL1:3 compared to the control, and BFL1:2 had the strongest effect. By contrast, the carnitine palmitolytransferase-1expression, a regulator of fatty acid oxidation, increased mostly in BFL1:2 and BFL1:3. Tumor necrosis factor-${\alpha}$ and interleukin-$1{\beta}$ expression was reduced in BL compared to that in BF and BFL1:2 in HepG2 cells. Interestingly, BL increased propionate production, and BF increased butyrate and propionate production and increased total SCFA content in fecal incubation. BF increased the contents of Bifidobacteriales and Lactobacillales and decreased those of Clostridiales, whereas BL elevated the contents of Bacteroidales and decreased those of Enterobacteriales. In conclusion, BFL1:2 and BFL1:3 may be potential therapeutic candidates for NAFLD.

Endogenous catalase delays high-fat diet-induced liver injury in mice

  • Piao, Lingjuan;Choi, Jiyeon;Kwon, Guideock;Ha, Hunjoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.3
    • /
    • pp.317-325
    • /
    • 2017
  • Non-alcoholic fatty liver disease (NAFLD) has become the most prevalent liver disease in parallel with worldwide epidemic of obesity. Reactive oxygen species (ROS) contributes to the development and progression of NAFLD. Peroxisomes play an important role in fatty acid oxidation and ROS homeostasis, and catalase is an antioxidant exclusively expressed in peroxisome. The present study examined the role of endogenous catalase in early stage of NAFLD. 8-week-old male catalase knock-out (CKO) and age-matched C57BL/6J wild type (WT) mice were fed either a normal diet (ND: 18% of total calories from fat) or a high fat diet (HFD: 60% of total calories from fat) for 2 weeks. CKO mice gained body weight faster than WT mice at early period of HFD feeding. Plasma triglyceride and ALT, fasting plasma insulin, as well as liver lipid accumulation, inflammation (F4/80 staining), and oxidative stress (8-oxo-dG staining and nitrotyrosine level) were significantly increased in CKO but not in WT mice at 2 weeks of HFD feeding. While phosphorylation of Akt (Ser473) and $PGC1{\alpha}$ mRNA expression were decreased in both CKO and WT mice at HFD feeding, $GSK3{\beta}$ phosphorylation and Cox4-il mRNA expression in the liver were decreased only in CKO-HF mice. Taken together, the present data demonstrated that endogenous catalase exerted beneficial effects in protecting liver injury including lipid accumulation and inflammation through maintaining liver redox balance from the early stage of HFD-induced metabolic stress.

Anti-Lipogenic Effect of Functional Cereal Samples on High Sucrose Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice (고당식이로 유도된 비알코올성 지방간 마우스에서 기능성 잡곡의 지질 대사 개선 효과)

  • Lee, Ko-Eun;Song, Jia-Le;Jeong, Byung-Jin;Jeong, Jong-Sung;Huh, Tae-Gon;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.6
    • /
    • pp.789-796
    • /
    • 2016
  • The anti-lipogenic effect of cereal samples on high sucrose diet (HSD)-induced non-alcoholic fatty liver disease (NAFLD) in mice was studied. We divided C57BL/6 mice into various groups based on 8 weeks of treatment with three types of cereal samples (HSD+WR, HSD diet containing 40% white rice; HSD+MCG, HSD diet containing 40% mixed cereal grain; HSD+AO-MCG, HSD diet containing 40% mixed antiobesity-cereal grain). After the experimental period, body weight changes, liver weights, serum lipid profiles, and hepatic fatty acid metabolism-related gene expression levels were determined. We found that HSD+WR, HSD+MCG, and HSD+AO-MCG treatments reduced body weight and liver weight, especially HSD+MCG and HSD+AO-MCG effectively reduced levels of serum triglycerides, total cholesterol, and low-density lipoprotein cholesterol. However, high density lipoprotein cholesterol levels increased compared to the control group. Furthermore, expression of hepatic lipogenic genes such as sterol regulatory element-binding protein-1c, acetyl-coenzyme A carboxylase, fatty acid synthase, stearoyl-coenzyme A desaturase-1, cluster of differentiation, and $PPAR-{\gamma}$ (peroxisome proliferator activated receptor ${\gamma}$) decreased, whereas expression of ${\beta}-oxidation$ genes such as $PPAR-{\alpha}$ and carnitine palmitoyl transferase-1 increased following HSD+MCG and HSD+AO-MCG treatment compared with levels in HSD+WR and control groups. These results suggest that the functional cereal samples, especially HSD+AO-MCG treatment, improved hepatic steatosis triggered by an HSD-induced imbalance in hepatic lipid metabolism.

Ginsenoside Rg3-enriched Korean Red Ginseng extract attenuates Non-Alcoholic Fatty Liver Disease by way of suppressed VCAM-1 expression in liver sinusoidal endothelium

  • Seoung-Woo Lee ;Su-Min Baek ;Young-Jin Lee ;Tae-Un Kim ;Jae-Hyuk Yim ;Jun-Hyeok Son ;Hee-Yeon Kim;Kyung-Ku Kang ;Jong Hun Kim ;Man Hee Rhee ;Sang-Joon Park ;Seong-Kyoon Choi ;Jin-Kyu Park
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.429-439
    • /
    • 2023
  • Background: The incidence and clinical importance of nonalcoholic fatty liver disease (NAFLD) has emerged. However, effective therapeutic strategies for NAFLD have yet to be found. Panax ginseng (P. ginseng) is a traditional herb in Eastern Asia with therapeutic effects in many chronic disorders. However, the precise effects of ginseng extract on NAFLD are currently unknown. In present study, the therapeutic effects of Rg3-enriched red ginseng extract (Rg3-RGE) on the progression of NAFLD were explored. Methods: Twelve-week-old C57BL/6 male mice were fed a chow or western diet supplemented with high sugar water solution with or without Rg3-RGE. Histopathology, immunohistochemistry, immunofluorescence, serum biochemistry, western blot analysis, and quantitative RT-PCR were used for in vivo experiment. Conditionally immortalized human glomerular endothelial cell (CiGEnC) and primary liver sinusoidal endothelial cells (LSECs) were used for in vitro experiments. Results: Eight weeks of Rg3-RGE treatment significantly attenuated the inflammatory lesions of NAFLD. Furthermore, Rg3-RGE inhibited the inflammatory infiltrate in liver parenchyma and the expression of adhesive molecules to LSECs. Moreover, the Rg3-RGE exhibited similar patterns on the in vitro assays. Conclusion: The results demonstrate that Rg3-RGE treatment ameliorates NAFLD progression by inhibiting chemotaxis activities in LSECs.