Browse > Article
http://dx.doi.org/10.3746/pnf.2016.21.3.171

Carrot Juice Administration Decreases Liver Stearoyl-CoA Desaturase 1 and Improves Docosahexaenoic Acid Levels, but Not Steatosis in High Fructose Diet-Fed Weanling Wistar Rats  

Mahesh, Malleswarapu (Lipid Biochemistry Division, National Institute of Nutrition)
Bharathi, Munugala (Lipid Biochemistry Division, National Institute of Nutrition)
Reddy, Mooli Raja Gopal (Lipid Biochemistry Division, National Institute of Nutrition)
Kumar, Manchiryala Sravan (Lipid Biochemistry Division, National Institute of Nutrition)
Putcha, Uday Kumar (Pathology Division, National Institute of Nutrition)
Vajreswari, Ayyalasomayajula (Lipid Biochemistry Division, National Institute of Nutrition)
Jeyakumar, Shanmugam M. (Lipid Biochemistry Division, National Institute of Nutrition)
Publication Information
Preventive Nutrition and Food Science / v.21, no.3, 2016 , pp. 171-180 More about this Journal
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases associated with an altered lifestyle, besides genetic factors. The control and management of NAFLD mostly depend on lifestyle modifications, due to the lack of a specific therapeutic approach. In this context, we assessed the effect of carrot juice on the development of high fructose-induced hepatic steatosis. For this purpose, male weanling Wistar rats were divided into 4 groups, fed either a control (Con) or high fructose (HFr) diet of AIN93G composition, with or without carrot juice (CJ) for 8 weeks. At the end of the experimental period, plasma biochemical markers, such as triglycerides, alanine aminotransferase, and ${\beta}$-hydroxy butyrate levels were comparable among the 4 groups. Although, the liver injury marker, aspartate aminotransferase, levels in plasma showed a reduction, hepatic triglycerides levels were not significantly reduced by carrot juice ingestion in the HFr diet-fed rats (HFr-CJ). On the other hand, the key triglyceride synthesis pathway enzyme, hepatic stearoyl-CoA desaturase 1 (SCD1), expression at mRNA level was augmented by carrot juice ingestion, while their protein levels showed a significant reduction, which corroborated with decreased monounsaturated fatty acids (MUFA), particularly palmitoleic (C16:1) and oleic (C18:1) acids. Notably, it also improved the long chain n-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA; C22:6) content of the liver in HFr-CJ. In conclusion, carrot juice ingestion decreased the SCD1-mediated production of MUFA and improved DHA levels in liver, under high fructose diet-fed conditions. However, these changes did not significantly lower the hepatic triglyceride levels.
Keywords
PUFA; fatty liver; vegetables; carotenoids; elongases;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nierenberg DW, Nann SL. 1992. A method for determining concentrations of retinol, tocopherol, and five carotenoids in human plasma and tissue samples. Am J Clin Nutr 56: 417-426.   DOI
2 Janczyk W, Socha P, Lebensztejn D, Wierzbicka A, Mazur A, Neuhoff-Murawska J, Matusik P. 2013. Omega-3 fatty acids for treatment of non-alcoholic fatty liver disease: design and rationale of randomized controlled trial. BMC Pediatr 13: 85.   DOI
3 Bruning JC, Michael MD, Winnay JN, Hayashi T, Horsch D, Accili D, Goodyear LJ, Kahn CR. 1998. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell 2: 559-569.   DOI
4 Raja Gopal Reddy M, Pavan Kumar C, Mahesh M, Sravan Kumar M, Mullapudi Venkata S, Putcha UK, Vajreswari A, Jeyakumar SM. 2016. Vitamin A deficiency suppresses high fructose-induced triglyceride synthesis and elevates resolvin D1 levels. Biochim Biophys Acta 1861: 156-165.   DOI
5 Karahashi M, Ishii F, Yamazaki T, Imai K, Mitsumoto A, Kawashima Y, Kudo N. 2013. Up-regulation of stearoyl-CoA desaturase 1 increases liver MUFA content in obese zucker but not Goto-Kakizaki rats. Lipids 48: 457-467.   DOI
6 Li ZZ, Berk M, McIntyre TM, Feldstein AE. 2009. Hepatic lipid partitioning and liver damage in nonalcoholic fatty liver disease: role of stearoyl-CoA desaturase. J Biol Chem 284: 5637-5644.   DOI
7 Jeyakumar SM, Lopamudra P, Padmini S, Balakrishna N, Giridharan NV, Vajreswari A. 2009. Fatty acid desaturation index correlates with body mass and adiposity indices of obesity in Wistar NIN obese mutant rat strains WNIN/Ob and WNIN/GR-Ob. Nutr Metab 6: 27.   DOI
8 Miyazaki M, Dobrzyn A, Man WC, Chu K, Sampath H, Kim HJ, Ntambi JM. 2004. Stearoyl-CoA desaturase 1 gene expression is necessary for fructose-mediated induction of lipogenic gene expression by sterol regulatory element-binding protein-1c-dependent and -independent mechanisms. J Biol Chem 279: 25164-25171.   DOI
9 Stone RL, Bernlohr DA. 1990. The molecular basis for inhibition of adipose conversion of murine 3T3-L1 cells by retinoic acid. Differentiation 45: 119-127.   DOI
10 Miller CW, Waters KM, Ntambi JM. 1997. Regulation of hepatic stearoyl-CoA desaturase gene 1 by vitamin A. Biochem Biophys Res Commun 231: 206-210.   DOI
11 Jeyakumar SM, Vajreswari A, Giridharan NV. 2008. Vitamin A regulates obesity in WNIN/Ob obese rat; independent of stearoyl-CoA desaturase-1. Biochem Biophys Res Commun 370: 243-247.   DOI
12 Ntambi JM, Miyazaki M. 2004. Regulation of stearoyl-CoA desaturases and role in metabolism. Prog Lipid Res 43: 91-104.   DOI
13 Heinemann FS, Ozols J. 1998. Degradation of stearoyl-coenzyme A desaturase: endoproteolytic cleavage by an integral membrane protease. Mol Biol Cell 9: 3445-3453.   DOI
14 Heinemann FS, Ozols J. 2003. Stearoyl-CoA desaturase, a short-lived protein of endoplasmic reticulum with multiple control mechanisms. Prostaglandins Leukot Essent Fatty Acids 68: 123-133.   DOI
15 Heinemann FS, Korza G, Ozols J. 2003. A plasminogen-like protein selectively degrades stearoyl-CoA desaturase in liver microsomes. J Biol Chem 278: 42966-42975.   DOI
16 Heinemann FS, Mziaut H, Korza G, Ozols J. 2003. A microsomal endopeptidase from liver that preferentially degrades stearoyl-CoA desaturase. Biochemistry 42: 6929-6937.   DOI
17 Fan J, Krautkramer KA, Feldman JL, Denu JM. 2015. Metabolic regulation of histone post-translational modifications. ACS Chem Biol 10: 95-108.   DOI
18 Hanes SD. 2015. Prolyl isomerases in gene transcription. Biochim Biophys Acta 1850: 2017-2034.   DOI
19 Laguna JC, Alegret M, Roglans N. 2014. Simple sugar intake and hepatocellular carcinoma: epidemiological and mechanistic insight. Nutrients 6: 5933-5954.   DOI
20 Cave M, Deaciuc I, Mendez C, Song Z, Joshi-Barve S, Barve S, McClain C. 2007. Nonalcoholic fatty liver disease: predisposing factors and the role of nutrition. J Nutr Biochem 18: 184-195.   DOI
21 Dongiovanni P, Lanti C, Riso P, Valenti L. 2016. Nutritional therapy for nonalcoholic fatty liver disease. J Nutr Biochem 29: 1-11.   DOI
22 Goran MI, Walker R, Allayee H. 2012. Genetic-related and carbohydrate-related factors affecting liver fat accumulation. Curr Opin Clin Nutr Metab Care 15: 392-396.   DOI
23 Lee J, Ozcan U. 2014. Unfolded protein response signaling and metabolic diseases. J Biol Chem 289: 1203-1211.   DOI
24 Guillou H, Zadravec D, Martin PG, Jacobsson A. 2010. The key roles of elongases and desaturases in mammalian fatty acid metabolism: insights from transgenic mice. Prog Lipid Res 49: 186-199.   DOI
25 Ferder L, Ferder MD, Inserra F. 2010. The role of high-fructose corn syrup in metabolic syndrome and hypertension. Curr Hypertens Rep 12: 105-112.   DOI
26 Pool-Zobel BL, Bub A, Liegibel UM, Treptow-van Lishaut S, Rechkemmer G. 1998. Mechanisms by which vegetable consumption reduces genetic damage in humans. Cancer Epidemiol Biomarkers Prev 7: 891-899.
27 Sharma KD, Karki S, Thakur NS, Attri S. 2012. Chemical composition, functional properties and processing of carrot-a review. J Food Sci Technol 49: 22-32.   DOI
28 Potter AS, Foroudi S, Stamatikos A, Patil BS, Deyhim F. 2011. Drinking carrot juice increases total antioxidant status and decreases lipid peroxidation in adults. Nutr J 10: 96.   DOI
29 Torronen R, Lehmusaho M, Hakkinen S, Hanninen O, Mykkanen H. 1996. Serum ${\beta}$-carotene response to supplementation with raw carrots, carrot juice or purified ${\beta}$-carotene in healthy non-smoking women. Nutr Res 16: 565-575.   DOI
30 Bub A, Watzl B, Abrahamse L, Delincee H, Adam S, Wever J, Muller H, Rechkemmer G. 2000. Moderate intervention with carotenoid-rich vegetable products reduces lipid peroxidation in men. J Nutr 130: 2200-2206.   DOI
31 He Y, Root MM, Parker RS, Campbell TC. 1997. Effects of carotenoid-rich food extracts on the development of preneoplastic lesions in rat liver and on in vivo and in vitro antioxidant status. Nutr Cancer 27: 238-244.   DOI
32 Raja Gopal Reddy M, Asha GV, Sravan Kumar M, Uday Kumar P, Vajreswari A, Jeyakumar SM. 2016. High fat diet feeding elevates liver retinol, docosahexaenoic acid and very long chain fatty acid elongase 2 levels in C57BL/6J mice. Int J Vitam Nutr Res (In press).
33 Pauter AM, Olsson P, Asadi A, Herslof B, Csikasz RI, Zadravec D, Jacobsson A. 2014. Elovl2 ablation demonstrates that systemic DHA is endogenously produced and is essential for lipid homeostasis in mice. J Lipid Res 55: 718-728.   DOI
34 Zheng J, Peng C, Ai Y, Wang H, Xiao X, Li J. 2016. Docosahexaenoic acid ameliorates fructose-induced hepatic steatosis involving ER stress response in primary mouse hepatocytes. Nutrients 8: 55.   DOI
35 Soni NK, Nookaew I, Sandberg A, Gabrielsson BG. 2015. Eicosapentaenoic and docosahexaenoic acid-enriched high fat diet delays the development of fatty liver in mice. Lipids Health Dis 14: 74.   DOI
36 Depner CM, Philbrick KA, Jump DB. 2013. Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a $Ldlr^{-/-}$ mouse model of western diet-induced nonalcoholic steatohepatitis. J Nutr 143: 315-323.   DOI
37 Kobaek-Larsen M, Christensen LP, Vach W, Ritskes-Hoitinga J, Brandt K. 2005. Inhibitory effects of feeding with carrots or (-)-falcarinol on development of azoxymethane-induced preneoplastic lesions in the rat colon. J Agric Food Chem 53: 1823-1827.   DOI
38 Pool-Zobel BL, Bub A, Muller H, Wollowski I, Rechkemmer G. 1997. Consumption of vegetables reduces genetic damage in humans: first results of a human intervention trial with carotenoid-rich foods. Carcinogenesis 18: 1847-1850.   DOI
39 Wehbe K, Mroueh M, Daher CF. 2009. The potential role of Daucus carota aqueous and methanolic extracts on inflammation and gastric ulcers in rats. J Complementary Integr Med 6: 7.
40 Poudyal H, Panchal S, Brown L. 2010. Comparison of purple carrot juice and ${\beta}$-carotene in a high-carbohydrate, high-fat diet-fed rat model of the metabolic syndrome. Br J Nutr 104: 1322-1332.   DOI
41 Nicolle C, Gueux E, Lab C, Jaffrelo L, Rock E, Mazur A, Amouroux P, Remesy C. 2004. Lyophilized carrot ingestion lowers lipemia and beneficially affects cholesterol metabolism in cholesterol-fed C57BL/6J mice. Eur J Nutr 43: 237-245.
42 Nicolle C, Cardinault N, Aprikian O, Busserolles J, Grolier P, Rock E, Demigne C, Mazur A, Scalbert A, Amouroux P, Remesy C. 2003. Effect of carrot intake on cholesterol metabolism and on antioxidant status in cholesterol-fed rat. Eur J Nutr 42: 254-261.   DOI
43 Sulaeman A, Keeler L, Giraud DW, Taylor SL, Wehling RL, Driskell JA. 2001. Carotenoid content and physicochemical and sensory characteristics of carrot chips deep-fried in different oils at several temperatures. J Food Sci 66: 1257-1264.   DOI
44 Fedor DM, Adkins Y, Mackey BE, Kelley DS. 2012. Docosahexaenoic acid prevents trans-10, cis-12-conjugated linoleic acid-induced nonalcoholic fatty liver disease in mice by altering expression of hepatic genes regulating fatty acid synthesis and oxidation. Metab Syndr Relat Disord 10: 175-180.   DOI
45 Nobili V, Bedogni G, Alisi A, Pietrobattista A, Rise P, Galli C, Agostoni C. 2011. Docosahexaenoic acid supplementation decreases liver fat content in children with non- alcoholic fatty liver disease: double-blind randomised controlled clinical trial. Arch Dis Child 96: 350-353.   DOI