• Title/Summary/Keyword: Non-Gaussian Noise

Search Result 144, Processing Time 0.02 seconds

Application of Genetic Algorithm for Large-Scale Multiuser MIMO Detection with Non-Gaussian Noise

  • Ran, Rong
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.2
    • /
    • pp.73-78
    • /
    • 2022
  • Based on experimental measurements conducted on many different practical wireless communication systems, ambient noise has been shown to be decidedly non-Gaussian owing to impulsive phenomena. However, most multiuser detection techniques proposed thus far have considered Gaussian noise only. They may therefore suffer from a considerable performance loss in the presence of impulsive ambient noise. In this paper, we consider a large-scale multiuser multiple-input multiple-output system in the presence of non-Gaussian noise and propose a genetic algorithm (GA) based detector for large-dimensional multiuser signal detection. The proposed algorithm is more robust than linear multi-user detectors for non-Gaussian noise because it uses a multi-directional search to manipulate and maintain a population of potential solutions. Meanwhile, the proposed GA-based algorithm has a comparable complexity because it does not require any complicated computations (e.g., a matrix inverse or derivation). The simulation results show that the GA offers a performance gain over the linear minimum mean square error algorithm for both non-Gaussian and Gaussian noise.

ML-Based and Blind Frequency Offset Estimators Robust to Non-Gaussian Noise in OFDM Systems (비정규 잡음에 강인한 ML기반 OFDM 블라인드 주파수 옵셋 추정기)

  • Shim, Jeongyoon;Yoon, Seokho;Kim, Kwang Soon;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.4
    • /
    • pp.365-370
    • /
    • 2013
  • In this paper, we propose robust blind estimators for the frequency offset of orthogonal frequency division multiplexing in non-Gaussian noise environments. We first propose a maximum likelihood (ML) estimator in non-Gaussian noise modeled as a complex isotropic Cauchy process, and then, a simpler estimator based on the ML estimator is proposed. From numerical results, we confirm that the proposed estimators are robust to the non-Gaussian noise and have a better estimation performance over the conventional estimator in non-Gaussian noise environments.

Position Estimation of MBK system for non-Gaussian Underwater Sensor Networks (비가우시안 노이즈가 존재하는 수중 환경에서 MBK 시스템의 위치 추정)

  • Lee, Dae-Hee;Yang, Yeon-Mo;Huh, Kyung Moo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.232-238
    • /
    • 2013
  • This paper study the position estimation of MBK system according to the non-linear filter for non-Gaussian noise in underwater sensor networks. In the filter to estimate location, recently, the extended Kalman filter (EKF) and particle filter are getting attention. EKF is widely used due to the best algorithm in the Gaussian noise environment, but has many restrictions on the usage in non-Gaussian noise environment such as in underwater. In this paper, we propose the improved One-Dimension Particle Filter (ODPF) using the distribution re-interpretation techniques based on the maximum likelihood. Through the simulation, we compared and analyzed the proposed particle filter with the EKF in non-Gaussian underwater sensor networks. In the case of both the sufficient statistical sample and the sufficient calculation capacity, we confirm that the ODPF's result shows more accurate localization than EKF's result.

Gravitational Wave Data Analysis Activities in Korea

  • Oh, Sang-Hoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.78.2-78.2
    • /
    • 2014
  • Many techniques for data analysis also based on gaussian noise assumption which is often valid in various situations. However, the sensitivity of gravitational wave searches are limited by their non-gaussian and non-stationary noise. We introduce various on-going efforts to overcome this limitation in Korean Gravitational Wave Group. First, artificial neural networks are applied to discriminate non-gaussian noise artefacts and gravitational-wave signals using auxiliary channels of a gravitational wave detector. Second, viability of applying Hilbert-Huang transform is investigated to deal with non-stationary data of gravitational wave detectors. We also report progress in acceleration of low-latency gravitational search using GPGPU.

  • PDF

DS/SS Code Acquisition Scheme Based on Signed-Rank Statistic in Non-Gaussian Impulsive Noise Environments (비정규 충격성 잡음 환경에서 부호 순위 통계량에 바탕을 둔 직접수열 대역확산 부호 획득기법)

  • Kim, Sang-Hun;Ahn, Sang-Ho;Lee, Young-Yoon;Yoo, Seung-Soo;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2C
    • /
    • pp.200-207
    • /
    • 2008
  • In this paper, a new detector is proposed for code acquisition, which employs the signs and ranks of the received signal samples, instead of their actual values, and so does not require knowledge of the non-Gaussian noise dispersion. The mean acquisition performance of the proposed detector is compared with that of the detector of $^{[1]}$. The simulation results show that the proposed scheme is not only robust to deviations from the true value of the non-Gaussian noise dispersion, but also has comparable performance to that of the scheme of $^{[1]}$ using exact knowledge of the non-Gaussian noise dispersion.

OFDM Frequency Offset Estimation Schemes Robust to the Non-Gaussian Noise (비정규 잡음에 강인한 OFDM 주파수 옵셋 추정 기법)

  • Park, Jong-Hun;Yu, Chang-Ha;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5A
    • /
    • pp.298-304
    • /
    • 2012
  • In this paper, we propose robust estimators for the frequency offset of orthogonal frequency division multiplexing in non-Gaussian noise environments. We first propose a maximum-likelihood (ML) estimator in non-Gaussian noise modeled as a complex isotropic Cauchy process, and then, we present a simpler suboptimal estimator based on the ML estimator. From numerical results, it is demonstrated that the proposed estimators not only outperform the conventional estimators, but also have a robustness in non-Gaussian noise environments.

Two-Dimensional Localization Problem under non-Gaussian Noise in Underwater Acoustic Sensor Networks (비가우시안 노이즈가 존재하는 수중 환경에서 2차원 위치추정)

  • Lee, DaeHee;Yang, Yeon-Mo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.418-422
    • /
    • 2013
  • This paper has considered the location estimation problem in two dimension space by using a non-linear filter under non-Gaussian noise in underwater acoustic sensor networks(UASNs). Recently, the extended Kalman filter (EKF) is widely used in location estimation. However, the EKF has a lot of problems in the non-linear system under the non-gaussian noise environment like underwater environment. In this paper, we propose the improved Two-Dimension Particle Filter (TDPF) using the re-interpretation distribution techniques based on the maximum likelihood (ML). Through the simulation, we compared and analyzed the proposed TDPF with the EKF under the non-Gaussian underwater sensor networks. Finally, we determined that the TDPF's result shows more accurate localization than EKF's result.

Simple Detection Based on Soft-Limiting for Binary Transmission in a Mixture of Generalized Normal-Laplace Distributed Noise and Gaussian Noise

  • Kim, Sang-Choon
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.949-952
    • /
    • 2011
  • In this letter, a simplified suboptimum receiver based on soft-limiting for the detection of binary antipodal signals in non-Gaussian noise modeled as a generalized normal-Laplace (GNL) distribution combined with Gaussian noise is presented. The suboptimum receiver has low computational complexity. Furthermore, when the number of diversity branches is small, its performance is very close to that of the Neyman-Pearson optimum receiver based on the probability density function obtained by the Fourier inversion of the characteristic function of the GNL-plus-Gaussian distribution.

Fusion of Decisions in Wireless Sensor Networks under Non-Gaussian Noise Channels at Large SNR (비 정규 분포 잡음 채널에서 높은 신호 대 잡음비를 갖는 무선 센서 네트워크의 정보 융합)

  • Park, Jin-Tae;Kim, Gi-Sung;Kim, Ki-Seon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.577-584
    • /
    • 2009
  • Fusion of decisions in wireless sensor networks having flexibility on energy efficiency is studied in this paper. Two representative distributions, the generalized Gaussian and $\alpha$-stable probability density functions, are used to model non-Gaussian noise channels. By incorporating noise channels into the parallel fusion model, the optimal fusion rules are represented and suboptimal fusion rules are derived by using a large signal-to-noise ratio(SNR) approximation. For both distributions, the obtained suboptimal fusion rules are same and have equivalent form to the Chair-Varshney fusion rule(CVR). Thus, the CVR does not depend on the behavior of noise distributions that belong to the generalized Gaussian and $\alpha$-stable probability density functions. The simulation results show the suboptimality of the CVR at large SNRs.

An Order Statistic-Based Spectrum Sensing Scheme for Cooperative Cognitive Radio Networks in Non-Gaussian Noise Environments (비정규 잡음 환경에서 협력 무선인지 네트워크를 위한 순서 기반 스펙트럼 센싱 기법)

  • Cho, Hyung-Weon;Lee, Youngpo;Yoon, Seokho;Bae, Suk-Neung;Lee, Kwang-Eog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.11
    • /
    • pp.943-951
    • /
    • 2012
  • In this paper, we propose a novel spectrum sensing scheme based on the order statistic for cooperative cognitive radio network in non-Gaussian noise environments. Specifically, we model the ambient noise as the bivariate isotropic symmetric ${\alpha}$-stable random variable, and then, propose a cooperative spectrum sensing scheme based on the order of observations and the generalized likelihood ratio test. From numerical results, it is confirmed that the proposed scheme offers a substantial performance improvement over the conventional scheme in non-Gaussian noise environments.