DOI QR코드

DOI QR Code

OFDM Frequency Offset Estimation Schemes Robust to the Non-Gaussian Noise

비정규 잡음에 강인한 OFDM 주파수 옵셋 추정 기법

  • 박종훈 (삼성탈레스) ;
  • 유창하 (성균관대학교 정보통신대학 전자전기공학부) ;
  • 윤석호 (성균관대학교 정보통신대학 전자전기공학부)
  • Received : 2012.01.05
  • Accepted : 2012.03.30
  • Published : 2012.05.30

Abstract

In this paper, we propose robust estimators for the frequency offset of orthogonal frequency division multiplexing in non-Gaussian noise environments. We first propose a maximum-likelihood (ML) estimator in non-Gaussian noise modeled as a complex isotropic Cauchy process, and then, we present a simpler suboptimal estimator based on the ML estimator. From numerical results, it is demonstrated that the proposed estimators not only outperform the conventional estimators, but also have a robustness in non-Gaussian noise environments.

본 논문에서는 비정규 잡음 환경에서 orthogonal frequency division multiplexing 시스템의 주파수 옵셋을 신뢰성 있게 추정하는 기법들을 제안한다. 먼저 비정규 잡음을 복소 등방성 Cauchy 확률과정으로 모형화한 후 최대우도 (maximum-likelihood) 추정 기법을 제안하고, 또한 더 간단한 최대우도 추정 기반 준최적 추정 기법을 제안한다. 모의실험 결과를 통해 제안한 기법들이 기존의 기법들에 비해 비정규 잡음 환경에서 더 좋은 주파수 옵셋 추정 성능을 가질 뿐 아니라, 비정규 잡음 환경에서 강인함을 보인다.

Keywords

Acknowledgement

Supported by : 한국연구재단, 정보통신산업진흥원, 삼성탈레스(주)

References

  1. R. V. Nee, R. Prasad, OFDM for Wireless Multimedia Communications. Boston, MA: Artech House, Dec. 1999.
  2. T. M. Schmidl, D. C. Cox, "Robust frequency and timing synchronization for OFDM," IEEE Trans. Commun., 45(12), pp. 1613-1621, Dec. 1997. https://doi.org/10.1109/26.650240
  3. M. Morelli, U. Mengali, "An improved frequency offset estimator for OFDM applications," IEEE Commun. Lett., 3(3), pp. 75-77, March 1999. https://doi.org/10.1109/4234.752907
  4. J.-W. Choi, J. Lee, Q. Zhao, H.-L. Lou, "Joint ML estimation of frame timing and carrier frequency offset for OFDM systems employing time-domain repeated preamble," IEEE Trans. Wireless Commun., 9(1), pp. 311-317, Jan. 2010. https://doi.org/10.1109/TWC.2010.01.090674
  5. T. K. Blankenship, T. S. Rappaport, "Characteristics of impulsive noise in the 450-MHz band in hospitals and clinics," IEEE Trans. Antennas, Propag., 46(2), pp. 194-203, Feb. 1998. https://doi.org/10.1109/8.660963
  6. P. Torio, M. G. Sanchez, "A study of the correlation between horizontal and vertical polarizations of impulsive noise in UHF," IEEE Trans. Vehic. Technol., 56(5), pp. 2844-2849, Sep. 2007. https://doi.org/10.1109/TVT.2007.900398
  7. T. Taher, M. Misurac, J. LoCicero, D. Ucci, "Microwave oven signal interference mitigation for Wi-Fi communnication Systems," in Proc. IEEE Consumer Commun. and Networking Conf. (CCNC), pp. 67-68, Las Vegas, NV, Jan. 2008.
  8. X. Hong, C. X. Wang, J. Thompson, "Interference modeling of cognitive radio networks," in Proc. IEEE Vehic. Technol. Conf. (VTC), pp. 1851-1855, Singapore, May 2008.
  9. J. D. Parsons, The mobile radio propagation channel. New York, NY: Wiley, 1996.
  10. D. Middleton, "Statistical-physical models of electromagnetic interference," IEEE Trans. Electromagnetic Compatibility, EMC-19(3), pp. 106-127, Aug. 1977. https://doi.org/10.1109/TEMC.1977.303527
  11. D. Middleton, "Statistical-physical models of urban radio-noise environments Part I: Foundations," IEEE Trans. Electromagnetic Compatibility, EMC-14(2), pp. 38-56, May 1972. https://doi.org/10.1109/TEMC.1972.303188
  12. A. B. Hamza, H. Krim, "Image denoising: a nonlinear robust statistical approach," IEEE Trans. Signal Process., 49(12), pp. 3045-3054, Dec. 2001. https://doi.org/10.1109/78.969512
  13. C. L. Nikias, M. Shao, Signal Processing With Alpha-Stable Distributions and Applications. New York, NY: Wiley, Sep. 1995.
  14. H. G. Kang, I. Song, S. Yoon, Y. H. Kim, "A class of spectrum-sensing schemes for cognitive radio under impulsive noise circumstances: structure and performance in nonfading and fading environments," IEEE Trans. Vehic. Technol., 59(9), pp. 4322-4339, Nov. 2010. https://doi.org/10.1109/TVT.2010.2068066
  15. M. R. Spiegel, J. Liu, Mathematical Handbook of Formulas and Tables. New York, NY: McGraw-Hill, Nov. 1999.
  16. T. C. Chuah, B. S. Sharif, O. R. Hinton, "Nonlinear decorrelator for multiuser detection in non-Gaussian impulsive environments," Electron. Lett., 36(10), pp. 920-922, May 2000. https://doi.org/10.1049/el:20000656
  17. X. Ma, C. L. Nikias, "Parameter estimation and blind channel identification in impulsive signal environments," IEEE Trans. Signal Process., 43(12), pp. 2884-2897, Dec. 1995. https://doi.org/10.1109/78.476432
  18. S. A. Kassam, Signal Detection in Non-Gaussian Noise. New York, NY: Springer-Verlag, 1988.
  19. I. Song, J. Bae, S. Y. Kim, Advanced Theory of Signal Detection. Berlin, Germany: Springer-Verlag, May 2002.