• Title/Summary/Keyword: Non-Coherent

Search Result 196, Processing Time 0.022 seconds

A Comparison on Coherent Integration and Non-coherent Integration to Estimate Detection Range about Radar Cross Section in Radar System (레이더 시스템에서 레이더 단면적에 따른 탐지 거리 추정을 위한 코히런트 집적과 비 코히런트 집적에 대한 비교)

  • Ham, Sung-min;Ga, Gwan-u;Lee, Kwan-hyeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.2
    • /
    • pp.100-105
    • /
    • 2014
  • This paper comparatively analyze to integration case to have a influence detection range estimation about radar cross section in radar system. This paper estimate detection range used to probability of detection in radar equation that used to swerling case 1 in case of radar cross section is small and used to swerling case 3 in case of radar cross section is large. Through simulation, coherent integration and non-coherent integration about swerling case difference were comparatively analyzed. Through simulation, non-coherent integration case is outstanding detection range and we known that coherent integration don't suitable for detection range estimation.

Non-Data-Aided Weighted Non-Coherent Receiver for IR-UWB PPM Signals

  • Shen, Bin;Yang, Rumin;Cui, Taiping;Kwak, Kyung-Sup
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.460-463
    • /
    • 2010
  • This letter proposes an energy-detection-based non-data-aided weighted non-coherent receiver (NDA-WNCR) scheme for impulse radio ultra-wideband (IR-UWB) pulse-position modulated signals. Compared to the conventional WNCR, the optimal weights of the proposed NDA-WNCR are tremendously simplified as the maximum eigenvector of the IR-UWB signal energy sample autocorrelation matrix. The NDA-WNCR serves to blindly obtain the optimal weights and entirely circumvent the transmission of training symbols or channel estimation in practice. Analysis and simulation results verify that the bit error rate (BER) performance of the NDA-WNCR closely approaches the ideal BER of the conventional WNCRs.

Impulse Based TOA Estimation Method Using Non-Periodic Transmission Pattern in LR-WPAN (LR-WPAN에서 비주기적 전송 패턴을 갖는 임펄스 기반의 TOA 추정 기법)

  • Park, Woon-Yong;Park, Cheol-Ung;Hong, Yun-Gi;Choi, Sung-Soo;Lee, Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.352-360
    • /
    • 2008
  • Recently Task Group (TG) 4 of the Institute of Electrical and Electronics Engineers (IEEE) 802.15a has been recommended a system with ranging capability in existence of multiple Simultaneous operating piconets (SOPs) as well as low-cost, low-power. According to the ranging service, coherent and non-coherent based ranging schemes using ternary code have been adopted as a standard. However it is hard to estimate an accurate time of arrival (TOA) in case of using direct sequence based TOA estimation method because pulse repetition interval (PRI) offered by TG is more limited than the maximum excess delay (MED) of channel. To mitigate inter pulse interference (IPI) problem, this paper proposes a non-coherent TOA estimation scheme using non-periodic transmission (NPT) pattern. The proposed receiver is based on a non-coherent energy detection considering with motivation of low rate wireless personal area network (LR-WPAN). TOA information is estimated via proper comparison with a prescribed threshold after the sliding correlation and search back window (SBW) process for reducing TOA error. To verify the performance of proposed ranging scheme, two distinct channel models approved by IEEE 802.15.4a TG are considered. According to the simulation results, we could conclude that the proposed scheme have performed better performance than the conventional method on the existence of multiple SOPs.

An Efficient Assisted-GPS Acquisition Method in Weak Signal Environment (약 신호 환경에서 효율적인 A-GPS 초기동기 방법)

  • 박상현;이상정
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.96-102
    • /
    • 2004
  • For sensitivity enhancement, the general assisted-GPS acquisition method adopts not only the coherent accumulation technique but also the non-coherent accumulation technique since the long coherent accumulation period increases the number of frequency search cells. But the non-coherent accumulation technique causes tile squaring loss, which is a dominant factor among the acquisition losses of assisted GPS dealing with weak GPS signals. This paper derives the squaring loss of the previous assisted-GPS acquisition method and proposes an assisted-GPS acquisition method for solving the problem of squaring loss in weak signal environment. In this paper, it is explained that the proposed assisted-GPS acquisition method prevents the squaring loss using a coupled coherent accumulation technique and the number of search cells of the proposed assisted-GPS acquisition method is much smaller than that of the previous assisted-GPS acquisition method. Finally, through the simulation by the GPS simulator, the acquisition success rate of the proposed assisted-GPS acquisition method is compared with that of the previous assisted-GPS acquisition method and the acquisition improvements are shown in weak signal environment.

Disign of Non-coherent Demodulator for LR-WPAN Systems (LR-WPAN 시스템을 위한 비동기 복조 알고리즘 및 하드웨어 구조설계)

  • Lee, Dong-Chan;Jang, Soo-Hyun;Jung, Yun-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.705-711
    • /
    • 2013
  • In this paper, we present a low-complexity non-coherent demodulation algorithm and hardware architecture for LR-WPAN systems which can support the variable data rate for various applications. The need for LR-WPAN systems that can support the variable data rate is increasing due to the emergence of various sensor applications. Since the existing symbol based double correlation (SBDC) algorithm requires the increase of complexity to support the variable data rate, we propose the sample based double correlation (SPDC) algorithm which can be implemented without the increase of complexity. The proposed non-coherent demodulator was designed by verilog HDL and implemented with FPGA prototype board.

New Protocol at Fast Scan Mode for Sea-surface Small Target Detection

  • Cha, Sangbin;Park, Sanghong;Jung, Jooho;Choi, Inoh
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.2
    • /
    • pp.101-107
    • /
    • 2022
  • In this article, we propose a new protocol at fast scan mode for a sea-surface small target detection. The conventional fast scan mode is composed of coherent intrascan integration to suppress sea clutter and non-coherent interscan integration to exclude sea spikes. The proposed method realizes the coherent interscan integration by the new Fourier relationship between carrier-frequency and initial-radial-range, which can be analytically derived by using multiple carrier frequencies at fast scan mode, leading to improved detection performance, compared to the conventional non-coherent methods. In simulations, our proposed method is verified.

Development of Long-Range RFID Reader System supporting Sensor Tag (센서태그를 지원하는 장거리 RFID 리더 시스템 개발)

  • Shin, Dong-Beom;Kim, Dae-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6C
    • /
    • pp.626-633
    • /
    • 2009
  • ISO/IEC/WD 24753 defines new modem specifications for a long-range RFID communications and application protocol for a sensor tag system. According to the standard, the frequency offset of the tag is 4%. In general wireless communications systems, it is known that a coherent receiver is superior to a non-coherent receiver. However, if the frequency offset is large, it is difficult to restore the original data accurately with a coherent receiver, and the performance of a coherent receiver is easily degraded. In this paper, a non-coherent receiver structure is adopted to solve the frequency offset problem of long-range RFID communications. We designed a frequency estimation block to find an optimal frequency from the received signal with 4% frequency offset and proposed a start frame delimiter (SFD) detection algorithm to determine the start position of the payload. The frequency estimation block finds the optimal frequency from the received signal using 9-correlators. And the SFD detection block searches the received signal to find the start position of the payload with dual correlator. We implemented a long-range RFID reader with the proposed methods and evaluated its performance in a wired/wireless test network. The implemented long-range RFID reader showed more superior performance than the commercial RFID reader in terms of recognition range.

A method of frame synchronization of binary phase shift keying signal in underwater acoustic communications (수중 음향통신에서 binary phase shift keying신호의 프레임동기 방법)

  • YANG, Gyeong-pil;KIM, Wan-Jin;DO, Dae-Won;KO, Seokjun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.159-165
    • /
    • 2022
  • In this paper, a frame synchronization structure for the Binary Phase Shift Keying (BPSK) modulation method in underwater acoustic communication was proposed. The proposed frame synchronization structure is largely divided into two. First, the approximate position and frequency offset of the frame are obtained by non-coherent correlation and sliding Fast Fourier Transform (FFT) method. Second, after compensating for the frequency error to the received signal, the exact position of the frame is obtained by coherent correlation method. Maritime experiments were conducted to confirm the performance of the 2-STEP frame synchronization structure. It was showed that the limitations of the non-coherent correlation and sliding FFT method can be verified when the power of the received signal was greatly reduced due to the channel characteristics. As a result, stable frame synchronization could be obtained by compensating for the frequency error and then using the coherent correlation method.

Non-Coherent Ultra-Wideband Ranging Techniques (Non-Coherent UWB 레인징 기술)

  • Choi, Sung-Soo;Kim, Young-Sun;Oh, Hui-Myung;Lee, Won-Tae;Lee, Jae-Jo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2067-2068
    • /
    • 2006
  • 초광대역 (UWB)통신기술을 응용한 다양한 무선측위시스템은 향후, 전기-IT융합 유비쿼터스 전기설비 환경의 센서네트워크에서 중요한 역할로 대두된다. 이러한 UWB기반의 무선측위시스템은 UWB송수신기 자체의 정밀거리산출기능의 정확도 정도에 따라 그 성능이 직접적으로 좌우된다. 본 논문에서는 현재 논의되고 있는 UWB 레인징기술에 대한 소개와 특히 저비용, 저전력 운영이 가능한 단순한 구조를 갖는 비가역성(Non-coherent) UWB 레인징 시스템구조에 대해 새롭게 제안하고자 한다.

  • PDF

A 3-5 GHz Non-Coherent IR-UWB Receiver

  • Ha, Min-Cheol;Park, Young-Jin;Eo, Yun-Seong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.4
    • /
    • pp.277-282
    • /
    • 2008
  • A fully integrated inductorless CMOS impulse radio ultra-wideband (IR-UWB) receiver is implemented using $0.18\;{\mu}m$ CMOS technology for 3-5 GHz application. The UWB receiver adopts the non-coherent architecture, which removes the complexity of RF architecture and reduces power consumption. The receiver consists of inductorless differential three stage LNA, envelope detector, variable gain amplifier (VGA), and comparator. The measured sensitivity is -70 dBm in the condition of 5 Mbps and BER of $10^{-3}$. The receiver chip size is only $1.8\;mm\;{\times}\;0.9\;mm$. The consumed current is 15 mA with 1.8 V supply.