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This letter proposes an energy-detection-based non-data- 
aided weighted non-coherent receiver (NDA-WNCR) scheme 
for impulse radio ultra-wideband (IR-UWB) pulse-position 
modulated signals. Compared to the conventional WNCR, the 
optimal weights of the proposed NDA-WNCR are 
tremendously simplified as the maximum eigenvector of the IR-
UWB signal energy sample autocorrelation matrix. The NDA-
WNCR serves to blindly obtain the optimal weights and 
entirely circumvent the transmission of training symbols or 
channel estimation in practice. Analysis and simulation results 
verify that the bit error rate (BER) performance of the NDA-
WNCR closely approaches the ideal BER of the conventional 
WNCRs. 

Keywords: Energy detection, non-data aided, weighted non-
coherent receiver, impulse radio, ultra-wideband. 

I. Introduction 
In recent years, weighted non-coherent receivers (WNCR) 

have been motivated for impulse radio ultra-wideband (IR-
UWB) with simple circuitry [1]-[4]. Requiring no local 
template waveform generation and operating at the sub-
Nyquist sampling rate, WNCR considerably facilitates system 
implementation and achieves cost-efficient devices.  

In [1], weighted energy detection techniques were developed 
for IR-UWB systems with on-off keying modulation. The 
optimal weights and threshold were derived by maximizing the 
deflection coefficient of the symbol decision statistic. Based on 
[1], Wu and others [2] proposed a similar weighted symbol 
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decision strategy for pulse position modulation (PPM) signals, 
where the optimal threshold-setting was intrinsically evaded. 
Although the WNCRs in [1] and [2] significantly 
outperformed the conventional NCR (CNCR) in alleviating the 
aggregated noise effect, they were only feasible when the 
channel state information (CSI) and the noise power density 
are known a priori. In a more general signal model, D’Amico 
and others [3] verified the derivations of [1] and [2] and 
presented a pilot-symbol-aided optimal weight estimation 
method which offered the best possible performance at the cost 
of an efficiency penalty in low data-rate applications incurred 
by transmission of training symbols. These drawbacks imply a 
desideratum for a rather different weighting approach when the 
channel becomes severely time varying. Some other works on 
detecting the IR-UWB PPM signal include [4], where the 
compressed likelihood ratio test demanded an all-digital front-
end design and a prohibitively high sampling rate, and thus 
involved a significant complexity from the ADC and back-end 
computation point of view.   

In order to circumvent the practical barriers in estimating the 
nuisance parameters of the CSI and the noise, the main goal of 
this letter is to formulate a non-data-aided WNCR (NDA-
WNCR) scheme for the IR-UWB PPM signals. The NDA-
WNCR has a threefold merit in practice: It is a completely 
blind WNCR scheme yielding no system overhead for 
obtaining the optimal weights. Demanding no a priori 
knowledge of the noise, it is immune to the noise power 
uncertainty effects. It possesses almost the same bit error rate 
(BER) performance as that of the WNCR, which is achieved 
under the condition that the a priori CSI is ideally known.   

II. System Model 

Let the received IR-UWB PPM signal be represented as 
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where i, j, Tf, and Ts denote the symbol index, frame index, 
frame duration, and symbol interval, respectively. Each 
symbol is comprised of Nf frames, TΔ is the PPM time shift, 
and τ is the coarsely synchronized timing offset between the 
transmitter and the receiver. The pulse-position symbols   
are restricted to {0, 1},id ∈  and the sequence { 1, 1}ic ∈ −  
accounts for the polarity randomization code introduced to 
smooth the signal spectrum. The effective multipath pulse is 
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received UWB pulse at the l-th tap with unit energy, Eb is the 
symbol energy, lα and lτ are respectively the fading  
coefficients and delays of the multipath components, 
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sufficiently large, the additive white Gaussian noise (AWGN) 
is denoted by v(t), with zero-mean and double-sided power 
spectral density N0/2. 

For simplicity, we omit the symbol subscript i hereinafter. In 
the WNCR scheme, each Tf is partitioned into 2K sub-intervals 
with equal length Tb. An integrate-and-dump square-law device 
operates to collect the received signal energy samples within 
the j-th frame as 
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where f{1, 2, , }, {0, 1, , 1},k K j N∈ ∈ − and the K×Nf 
aggregate received signal energy sample matrix is  
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If we suppose 1 2[ , , , ]TKω ω ω=ω  is the target combining 
weight vector for the current symbol statistic of the WNCR, we 
can easily obtain the weighted symbol decision statistic by
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where 
f

T
N= ⊗Ω ω 1  (Kronecker product), 

fN1 is a column 
vector of Nf ones, d̂ is the demodulated symbol, and (.)tr is 
the trace of a matrix. If WNCR, ,[ ] 1,kjk j Z∀ =Ω is reduced to 
the non-weighted CNCR symbol statistic, ZCNCR. 

According to the central limit theorem, when the time-
bandwidth product NfTbW is asymptotically large, ZWNCR 
follows the Gaussian distribution [5] 

WNCR
( ( ), ( )), 0,

~
( ( ), ( )), 1,

T T

T T

tr tr d
Z

tr tr d

⎧ =⎪
⎨

− =⎪⎩

Ω Θ Ω RΩ

Ω Θ Ω RΩ

N

N
        (4)

 

where      

 

(0) (1) ,

( )( ) ,T

E E

E

⎧ ⎡ ⎤⎡ ⎤= = −⎢ ⎥⎪ ⎣ ⎦ ⎣ ⎦
⎨

⎡ ⎤⎪ = − −⎣ ⎦⎩

Θ Y Y Y

R Y Θ Y Θ          (5)
 

are the aggregate IR-UWB signal energy sample matrix and 
the covariance matrix of ZWNCR, respectively. 

By applying the BER minimization criterion [2], [3], the 
unnormalized optimal weights are obtained as 

(opt) 1
WNCR ,−=Ω R Θ                     (6) 

and the corresponding BER performance of the WNCR is 
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where 2( ) exp( / 2) / 2 .
x

Q x t dt π
+∞

= −∫  Note that when the  

optimal weights (opt)
WNCRΩ  in (6) are readily available in a slow 

varying or quasi-static channel environment, PErr,1 gives the 
lowest BER performance bound of the WNCR.  

III. Non-Data-Aided WNCR 

1. Optimal Weights of the NDA-WNCR 

In this section, we develop the NDA-WNCR. If Y(m) 
contains the IR-UWB PPM signal component, then the 
statistically averaged signal-to-noise ratio (SNR) of the 
weighted symbol statistic ZWNCR can be represented as 
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where 2
0 0 b ,KN T W=Σ I and IK is a K×K identity matrix. 

We realize that maximizing ( )γ Ω  in (8) is equivalent to 
maximizing 2( ) ( ),γΓ =Ω Ω which is represented as 
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where (0) (1) (0) (1)[( )( ) ]TEθ = − −R Y Y Y Y is the average 
autocorrelation matrix corresponding to the IR-UWB PPM 
signal energy matrix Θ . 

Consequently, the optimal weights can be defined as 
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where  1 1 2 1
0 0 b 2( ) ,T N T Wθ θ θ θ θα− − − −= = = =R C R C Σ R R R  

,T=β C ω  and C  is the Cholesky decomposition of 
0 ,Σ that is 0 .T=Σ CC  The constraint of f( )Ttr N=Ω Ω  is 

set on the basis that ( ) ( ')Γ = ΓΩ Ω  for ' ,c=Ω Ω 0.c∀ ≠  
Using the scalar Lagrange multiplier Lag ,λ ∈R we obtain 

Lag( ) ( 1),T T
θ λΓ = + −β β R β β β          (11) 

where by taking the derivative of ( )Γ β  with respect to β , 
that is ( ) / 0,∂Γ ∂ =β β  we can easily find the optimal weight 
vector opt max max 2( ) ( )eig eigθ θ=β R R ( 2⋅ denotes the 
Euclidean norm) as the maximum eigenvector of ,θR  
corresponding to the largest eigenvalue of .θR  

Finally, we obtain the weighted symbol decision statistic of 
the NDA-WNCR as 

 f

(opt) (opt)(0) (1)
NDA NDA NDA

1
,(0) (1)

opt ,0

ˆ 0
ˆ 1

 (( ) ) (( ) )

( ) 0

T T

N

j

d
d

Z tr tr
−

=

=
=

= −

>= − <∑

Ω Y Ω Y

β Y Y
   (12) 

where 
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overhead symbol, it is quite challenging to obtain accurate 
estimation of ,θR  because, in practice, the receiver is subject 
to stringently limited number of received signal energy samples 
for obtaining .θR  

Similar to ZWNCR, ZNDA also complies with normal 
distribution: 
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and hence the BER performance of the NDA-WNCR is 
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2. Implementation of the NDA-WNCR 

It is extremely challenging to acquire the IR-UWB PPM 
signal energy sample matrix Θ  in the absence of pilot 
symbols or a priori knowledge of the channel and the noise. 
Compared to (opt)

WNCRΩ  in (6), the derived optimal weights of 
the NDA-WNCR is significantly relaxed to solely rely 
on .θR This simplification substantially diminishes the 
difficulty to estimate the energy sample matrix Θ  and the 
covariance matrix R  and greatly facilitates the weight-setting 
process.  

Based on the records of the recently received symbol 
statistics, we propose a simple arithmetical averaging strategy 

for estimating θR in practice: 
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where i is the time index of the current symbol statistic, ( )
,
m

i j′y  
is the received signal energy sample vector of the j-th frame in 
the i'-th symbol, f f( 1) / ,N L N Lη = −  and L is the number of 
the most recently received symbols. Based on the estimated 

,θR  that is, ( )ˆ ,i
θR  the corresponding estimation of optβ  

can be easily obtained with a low-complexity singular-value 
decomposition computation, which is proportional to 3( )KO . 
Note that the receiver needs a minimum number of L symbols 
before the demodulation operation begins. This can be easily 
achieved through the system synchronization operations.  

IV. Simulations 

Monte-Carlo computer simulations are carried out to verify 
the BER performance of the proposed NDA-WNCR scheme 
and make comparisons with the performance of the CNCR and 
WNCR. The transmitted UWB monocycle pulse is of 
Gaussian shape with pulse width of 1 ns. The other simulation 
parameters are fixed as Tf = 120 ns, W=5 GHz, Tb=5 ns, Nf =1, 
and K=12.  

Figure 1 gives the BER performance of the NDA-WNCR in 
two IEEE802.15.3a channel model (CM) environments; 
namely, CM 1 and CM 3. Compared to the WNCR, for which 

 

 

Fig. 1. BER performance of NDA-WNCR in CM 1 and CM 3.
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the CSI knowledge is known prior to the symbol decision, the 
BER performance of the NDA-WNCR closely approaches that 
of the WNCR when the number of reference symbols (the 
most recently received symbols) is increased or when the SNR 
is becoming larger. This result validates the effectiveness of the 
NDA-WNCR weighting vectors. 

V. Conclusion 

A novel NDA-WNCR is proposed for IR-UWB PPM 
signals. The NDA-WNCR serves as a blind reception scheme 
operating on the received IR-UWB PPM signal energy sample 
autocorrelation matrix only. It is capable of obtaining the 
optimal weights without requiring any system overheads and 
eventually achieving almost the same BER performance as the 
ideal WNCR. 

References 

[1] Z. Tian and B.M. Sadler, “Weighted Energy Detection of Ultra-
Wideband Signals,” Proc. IEEE Workshop on Signal Process. 
Advances in Wireless Commun., 2005, pp. 1068-1072. 

[2] J. Wu, H. Xiang, and Z. Tian, “Weighted Noncoherent Receivers 
for UWB PPM Signals,” IEEE Commun. Lett, vol. 10, no. 9, 
2006, pp. 655-657. 

[3] A.A. D’Amico, U. Mengali, and E. Arias-de-Reyna, “Energy-
Detection UWB Receivers with Multiple Energy Measurements,” 
IEEE Trans. Wireless Commun., vol. 6, no. 7, 2007, pp. 2652-
2659. 

[4] J.A. Lopez-Salcedo and G. Vazquez, “Detection of PPM-UWB 
Random Signals,” IEEE Trans. Signal Process., vol. 56, no. 5, 
2008, pp. 2003-2016. 

[5] H. Urkowitz, “Energy Detection of Unknown Deterministic 
Signals,” Proc. IEEE, vol. 55, April 1967, pp. 523-231. 

 


