• Title/Summary/Keyword: Nominal Input

Search Result 139, Processing Time 0.025 seconds

Output Feedback Control and Its Application to a Flexible Spacecraft

  • Sung, Yoon-Gyeoung;Joo, Hae-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.105-114
    • /
    • 2000
  • An output feedback control (OFC) is presented for a linear stochastic system with known disturbance and applied to a flexible spacecraft for the reduction of residual vibration while allowing the natural deflection during operation. By converting the tracking problem into regulator problem, the OFC minimizes the expected value of a guadratic objective function composing of error stats which always remain on the intersection of sliding hypersurfaces. For the numerical evaluation with a flexible spacecraft, a large slewing maneuver strategy is devised with a tracking model for nominal trajectory and start-cost-stop strategy for economical maneuver in conjunction with the input shaping technique. The performance and efficacy of the proposed control scheme are illustrated with the comparison of different maneuver strategies.

  • PDF

Robust Stabilization of Differentially Flat Uncertain Nonlinear Systems (미분적으로 평활한 불확정 비선형 시스템의 강인 안정화)

  • Joo, Jin-Man;Park, Jin-Bae;Choi, Yoon-Ho;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.647-649
    • /
    • 1998
  • This paper describes a robust stabilization of single input nonlinear systems with parametric uncertainty. We first investigate differential flatness of the nominal nonlinear systems. If a single input system is differentially flat, it possesses a flat output. And we define coordinate transformation functions via successively differentiating the flat output, and we also consider the robust fictitious controls at every differentiation of the flat output. In the new coordinates the nonlinear system is transformed into the Brunovsky normal form with matched uncertainty. With a robust control based on the Lyapunov method, the robust stabilization is achieved.

  • PDF

Stability Analysis of Single-input Fuzzy Logic Controller (단일 입력 퍼지논리제어기의 안정성 분석)

  • 최병재
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.47-51
    • /
    • 2001
  • According as the controlled plants become more complex and large-scaled, the development of more intelligent control schemes is required in the control field. A fuzzy logic control (FLC) is one of proper schemes for this tendency. Recently, fuzzy control has been applied successfully to many industrial applications due to a number of advantages. But it still has some disadvantages. The conventional FLC has many tuning parameters: membership functions, scaling factors, and so forth. In order to improve this problem, a single-input fuzzy logic control (SFIC) which greatly simplifies the design process of the conventional FLC was proposed. Many research has also been proposed to develop the stability analysis of the FLC. In this paper we analyze the absolute stability of the SFLC. We first expand a nonlinear controlled plant into a Taylor series about a nominal operating point. And a fuzzy control system is transformed into a Lure system with nonlinearities. We also prove that the closed-loop system with the SFLC satisfies the sector condition globally.

  • PDF

Experimental Studies of Neural Compensation Technique for a Fuzzy Controlled Inverted Pendulum System

  • Lee, Geun-Hyeong;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.43-48
    • /
    • 2010
  • This article presents the experimental studies of controlling angle and position of the inverted pendulum system using neural network to compensate for errors caused due to fuzzy controller. Although fuzzy control method can deal with nonlinearities of the system, fixed fuzzy rules may not work and result in tracking errors in some cases. First, a nominal Takagi-Sugeno (TS) type fuzzy controller with fixed weights is used for controlling the inverted pendulum system. Then the neural network is added at the reference input to form the reference compensation technique (RCT)control structure. Neural network modifies the input trajectories to improve system performances by updating internal weights in on-line fashion. The back-propagation learning algorithm for neural network is derived and used to update weights. Control hardware of a DSP 6713 board to have real time control is implemented. Experimental results of controlling inverted pendulum system are conducted and performances are compared.

NEW MODELING AND CONTROL OF AN ASYMMETRIC HYDRAULIC ACTIVE SUSPENSION SYSTEM

  • Kim, Wanil;Sangchul Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.490-495
    • /
    • 1998
  • In this paper an asymmetric hydraulic actuator which consists of single acting cylinder and servo valve is modeled for a quarter car active suspension system. This model regards the force as an internal state rather than a control input. The control input of the model is the sum of oil flows that pass through the valve's orifices. The resulting dynamic equation in the state space ap-pears a feedback connection of a nominal linear time in-variant term with a nonlinear bounded uncertain block. Since this model makes it possible to eliminate the force control phase, analysis and controller design are made straightforward and simple. Well known LQR method is then applied. Simulation and test rig experiment show the effectiveness of this approach in modeling and control.

  • PDF

A Novel Robust Controller Design using Robust Internal-loop Compensator (강인 내부 보상기를 이용한 새로운 강인 제어기 설계)

  • Choi, Hyun-Taek;Suh, Il-Hong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.8
    • /
    • pp.987-995
    • /
    • 1999
  • A new robust controller design methodology for single-input single-output systems is proposed, where the proposed controller consists of a conventional or optimal servo controller at the outer loop as well as the robust internal-loop compensator(RIC) to eliminate the model uncertainty and external disturbance. It is shown that RIC with finite gain can make actual systems be nominal models within a prespecified error bound. And, it is also shown that RIC-based system is robustly stable regardless of input saturation. Several numerical examples are illustrated to show validities of the proposed robust controller.

  • PDF

Resonant Capacitor On/Off Control of Half-Bridge LLC Converter for High Efficiency Server Power Supply (고효율 서버용 전원 장치를 위한 하프-브리지 LLC 컨버터의 공진 커패시터 온-오프 제어)

  • Lee, Jae-Bum;Baek, Jae-Il;Youn, Han-Shin;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.285-286
    • /
    • 2015
  • In this letter, a simple control method of the HB LLC converter with one additional switch and capacitor in the primary side is proposed for wide-input-voltage applications with the hold-up time conditions. At nominal input, since the proposed method enables the HB LLC converter to operate with large transformer magnetizing inductance, it can reduce the conduction and switch turn-off losses in the primary side, which makes a high efficiency. On the other hand, during the hold-up time, since the proposed method increases the resonant capacitance by turning on one additional switch, the HB LLC converter can obtain high voltage gain.

  • PDF

An Injection-Locked Based Voltage Boost-up Rectifier for Wireless RF Power Harvesting Applications

  • Lee, Ji-Hoon;Jung, Won-Jae;Park, Jun-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2441-2446
    • /
    • 2018
  • This paper presents a radio frequency-to-direct current (RF-to-DC) converter for special RF power harvesting application at 915 MHz. The major featured components of the proposed RF-to-DC converter is the combination of a cross-coupled rectifier and an active diode: first, the cross-coupled rectifier boosts the input voltage to desired level, and an active diode blocks the reverse current, respectively. A prototype was implemented using $0.18{\mu}m$ CMOS technology, and the performance was proven from the fact that the targeted RF harvesting system's full-operation with higher power efficiency; even if the system's input power gets lower (e.g., from nominal 0 to min. -12 dBm), the proposed RF-to-DC converter constantly provides 1.47 V, which is exactly the voltage level to drive follow up system components like DC-to-DC converter and so on. And, maximum power conversion efficiency is 82 % calculated from the 0 dBm input power, 2.3 mA load current.

Statistical Prediction of Wake Fields on Propeller Plane by Neural Network using Back-Propagation

  • Hwangbo, Seungmyun;Shin, Hyunjoon
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.3
    • /
    • pp.1-12
    • /
    • 2000
  • A number of numerical methods like Computational Fluid Dynamics(CFD) have been developed to predict the flow fields of a vessel but the present study is developed to infer the wake fields on propeller plane by Statistical Fluid Dynamics(SFD) approach which is emerging as a new technique over a wide range of industrial fields nowadays. Neural network is well known as one prospective representative of the SFD tool and is widely applied even in the engineering fields. Further to its stable and effective system structure, generalization of input training patterns into different classification or categorization in training can offer more systematic treatments of input part and more reliable result. Because neural network has an ability to learn the knowledge through the external information, it is not necessary to use logical programming and it can flexibly handle the incomplete information which is not easy to make a definition clear. Three dimensional stern hull forms and nominal wake values from a model test are structured as processing elements of input and output layer respectively and a neural network is trained by the back-propagation method. The inferred results show similar figures to the experimental wake distribution.

  • PDF

A Study of the High Voltage Power Supply using a Sixfold Voltage-Multiplying Rectifier (6배압 정류기를 이용한 고전압 전원장치에 관한 연구)

  • Ahn, Tae-Young;Gil, Yongl-Man
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.2
    • /
    • pp.19-26
    • /
    • 2015
  • This paper presents design, fabrication, and performance evaluation of a high voltage power supply for Carbon Nano Tube-based planar light sources. The proposed power supply employs an LLC resonant half-bridge converter and a sixfold voltage-multiplying rectifier. Steady-state characteristics of the voltage-multiplying rectifier are analyzed and used to derive the input-to-output voltage conversion ratio of the power supply. The input-to-output frequency response characteristics of the LLC tank circuit are analyzed and utilized in designing a proto-type power supply which produces a 15 KV output using a 400 V input source. The high-voltage transformer is fabricated using a sectional bobbin structure with an epoxy impregnation, in order to provide sufficient insulation for high voltage operations. The performance of the proposed power supply is confirmed with stable and reliable operations at the 15 KV output from no load to nominal load conditions. The proposed power supply is well suited as an electric ballast required stable operations of Carbon Nano Tube-based planar light sources.