• Title/Summary/Keyword: Noise suppression

Search Result 477, Processing Time 0.027 seconds

A Multiphase DLL Based on a Mixed VCO/VCDL for Input Phase Noise Suppression and Duty-Cycle Correction of Multiple Frequencies (입력 위상 잡음 억제 및 체배 주파수의 듀티 사이클 보정을 위한 VCO/VCDL 혼용 기반의 다중위상 동기회로)

  • Ha, Jong-Chan;Wee, Jae-Kyung;Lee, Pil-Soo;Jung, Won-Young;Song, In-Chae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.11
    • /
    • pp.13-22
    • /
    • 2010
  • This paper proposed the dual-loops multiphase DLL based mixed VCO/VCDL for a high frequency phase noise suppression of the input clock and the multiple frequencies generation with a precise duty cycle. In the proposed architecture, the dual-loops DLL uses the dual input differential buffer based nMOS source-coupled pairs at the input stage of the mixed VCO/VCDL. This can easily convert the input and output phase transfer of the conventional DLL with bypass pass filter characteristic to the input and output phase transfer of PLL with low pass filter characteristic for the high frequency input phase noise suppression. Also, the proposed DLL can correct the duty-cycle error of multiple frequencies by using only the duty-cycle correction circuits and the phase tracking loop without additional correction controlled loop. At the simulation result with $0.18{\mu}m$ CMOS technology, the output phase noise of the proposed DLL is improved under -13dB for 1GHz input clock with 800MHz input phase noise. Also, at 1GHz operating frequency with 40%~60% duty-cycle error, the duty-cycle error of the multiple frequencies is corrected under $50{\pm}1%$ at 2GHz the input clock.

A Study on the Fabrication of K-band Local Oscillator Used Frequency Doubler Techniques (주파수 체배 기법을 이용한 K-대역 국부발진기 구현에 관한 연구)

  • 김장구;박창현;최병하
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.10
    • /
    • pp.109-117
    • /
    • 2004
  • In this paper, a K-band local oscillator composed of a VCDRO(Voltage Controlled Dielectric Resonator Oscillator), GaAs MESFET, and Reflector type frequency doubler has been designed and fabricated. TO obtain a good phase noise performance of a VCDRO, a active device was selected with a low noise figure and a low flicker noise MESFET and a dielectric resonator was used for selecting stable and high oscillation frequency. Especially, to have a higher conversion gain than a conventional doubler as well as a good harmonic suppression performance with circuit size reduced a doubler structure was employed as the Reflector type composed of a reflector and a open stub of quarter wave length for rejecting the unwanted harmonics. The measured results of fabricated oscillator show that the output power was 5.8 dBm at center frequency 12.05 GHz and harmonic suppression -37.98 dBc, Phase noise -114 dBc at 100 KHz offset frequency, respectively, and measured results show of fabricated frequency doubler, the output power at 5.8 dBm of input power is 1.755 dBm conversion gain 1.482 dB, harmonic suppression -33.09 dBc, phase noise -98.23 dBc at 100 KHz offset frequency, respectively. This oscillator could be available to a local oscillator in K-band which used frequency doubler techniques.

Adaptive Decision Feedback Equalizer Based on LDPC Code for the Phase Noise Suppression and Performance Improvement (위상잡음 제거와 성능향상을 위한 LDPC 부호 기반의 적응형 판정 궤환 등화기)

  • Kim, Do-Hoon;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.3A
    • /
    • pp.179-187
    • /
    • 2012
  • In this paper, we propose an adaptive DFE (Decision Feedback Equalizer) based on LDPC (Low Density Parity Check) code for phase noise suppression and performance improvement. The proposed equalizer in this paper is applied for wireless repeater system. So as to meet ever increasing requirements on higher wireless access data rate and better quality of service (QoS), the wireless repeater system has been studied. The echo channel and RF impairments such as phase noise produce performance degradation. In order to remove echo channel and phase noise, we suggest a novel adaptive DFE equalizer based on LDPC code. The proposed equalizer helps to compensate RF impairments and improve the performance significantly better than used independently. In addition, proposed equalizer has less iteration number of LDPC code. So, the proposed equalizer system has low complexity.

Output SINR Analysis of GPS Adaptive Interference Canceler Based on Modified Despreader (변형된 역확산기 기반의 GPS 적응 간섭제거기의 출력 SINR 해석)

  • Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.195-202
    • /
    • 2014
  • The Global Positioning System (GPS), which has various military and commercial applications, is designed to estimate the location of the specific user or object. In order to accurately estimate the location, GPS requires at least four satellite signals. The GPS receiver operates on extremely low signal-to-noise ratio (SNR) environment and it may suffer from various interference signals with the extremely high power. In this paper, we introduce a blind adaptive receiver based on the modified despreader, which suppress interference signals and detect GPS signals of interest without requiring explicit angle-of-arrival (AOA) information. We, also, provide the mathematical analysis for the signal-to-interference and noise ratio (SINR) of the modified despeader beamformer output. A representative computer simulation example is presented to illustrate the interference suppression performance of the considered GPS receiver and mathematical analysis of the SINR.

Fast Monopulse Method Using Noise-Jamming Subspace (재밍 환경에서 잡음 부공간을 이용한 고속 모노펄스 방법)

  • Lim, Jong-Hwan;Kim, Jae-Hak;Yang, Hoon-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.3
    • /
    • pp.372-375
    • /
    • 2014
  • A monopulse based on maximum likelihood(ML) in jamming scenario can suppress jamming signal using an inverse matrix of a covariance matrix. In order to achieve adequate suppression of jamming signal, the sufficient number of snapshots is required. However, this is not possible in high PRF scenario, which hinders a real-time tracking. Moreover, even with the large number of snapshots, the estimation accuracy of the target direction is decreased in low JNR(Jammer to Noise Ratio) due to insufficient jammer suppression. In this paper, we propose a monopulse algorithm that doesn't degrade performance significantly with a small number of snapshots and in low JNR. We show its derivation that exploits noise-jammer subspace of a covariance matrix, along with its performance through simulation.

Dual Sliding Statistics Switching Median Filter for the Removal of Low Level Random-Valued Impulse Noise

  • Suid, Mohd Helmi;Jusof, M F.M.;Ahmad, Mohd Ashraf
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1383-1391
    • /
    • 2018
  • A new nonlinear filtering algorithm for effectively denoising images corrupted by the random-valued impulse noise, called dual sliding statistics switching median (DSSSM) filter is presented in this paper. The proposed DSSSM filter is made up of two subunits; i.e. Impulse noise detection and noise filtering. Initially, the impulse noise detection stage of DSSSM algorithm begins by processing the statistics of a localized detection window in sorted order and non-sorted order, simultaneously. Next, the median of absolute difference (MAD) obtained from both sorted statistics and non-sorted statistics will be further processed in order to classify any possible noise pixels. Subsequently, the filtering stage will replace the detected noise pixels with the estimated median value of the surrounding pixels. In addition, fuzzy based local information is used in the filtering stage to help the filter preserves the edges and details. Extensive simulations results conducted on gray scale images indicate that the DSSSM filter performs significantly better than a number of well-known impulse noise filters existing in literature in terms of noise suppression and detail preservation; with as much as 30% impulse noise corruption rate. Finally, this DSSSM filter is algorithmically simple and suitable to be implemented for electronic imaging products.

Optimal Distribution of Viscoelastic Material for Transient Vibration Suppression of a Flexible Beam (유연보의 과도 진동 감쇠를 위한 점탄성 재료의 최적 분포)

  • Kim, Tae-Woo;Kim, Ji-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.362.1-362
    • /
    • 2002
  • Eigenvalues are taken as performance criteria for structural damping design using viscoelastic material. Given material properties, optimal distribution of damping material is sought based on eigenvalue sensitivity. For eigenanalysis of frequency dependent viscoelastic material rented structures, Golla-Hughes-McTavish(GHM) model is used and some dominant modes are chosen for consideration. (omitted)

  • PDF

Filtering Techniques for Chaotic Signals

  • Lee, Chung-Yong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.3E
    • /
    • pp.45-59
    • /
    • 1996
  • Generalized iterative methods for reducing noise in contaminated chaotic signals are proposed. These methods minimize a cost function composed of two parts : one containing information that represents how close enhanced signals are to the observed signal and another composed of constraints that fit the dynamics of the system. The convergence conditions and the error systems of the proposed are investigated. As one aspect of noise reduction, the suppression or cancellation of a chaotic interference signal is discussed.

  • PDF

An Enhanced Clarity of Husky Voice by Dissonant Frequency Filtering

  • Kang, Sang-Ki;Baek, Seong-Joon
    • Speech Sciences
    • /
    • v.12 no.4
    • /
    • pp.71-76
    • /
    • 2005
  • There have been numerous studies on the enhancement of noisy speech signal. In this paper, we propose a new speech enhancement method, that is, a filtering of a dissonant frequency combined with noise suppression algorithm. The simulation results indicate that the proposed method provides a significant gain in voice clarity. Therefore if the proposed enhancement scheme is used as a pre-filter, the perceptual clarity of husky voice is greatly enhanced.

  • PDF

The Study for Noisy Speech Improvement with Noise Perception Pattern Suppression (잡음 신호의 지각 패턴 제어를 통한 음질 개선 알고리즘 개발에 관한 연구)

  • Kim Hunjoong;Cha Hyungtai
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.199-202
    • /
    • 2002
  • 본 논문에서는 사람의 청각 모델을 기반으로 잡음에 의해 손상된 음성 신호로부터 잡음 신호의 마스킹 특성과 신호에너지의 지각(知覺)을 나타내는 임계대역(critical band)에서의 잡음 에너지에 대한 지각 패턴인 noise excitation pattern을 이용한 잡음 에너지 차감과 잡음 추정 오차에 의한 변형된 음성신호 내의 순음(tonal) 성분과 비순음(non-tonal)성분의 보정을 통해 효과적인 음성 품질의 개선을 위한 연구를 하였다.

  • PDF