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Filtering Techniques for Chaotic Signals

*Chungyong Lec and

*Douglas B. Williams

Abstract

Generabized iterative methods for reducing noise in contaminated chaotic signals are proposed. These methods minimize

a cost function composed of two parts: one containing information that represents how close enhanced signals are to the

obscrved signal and another composed of consiraints that fit the dynamics of the system. The convergence conditions and

the error systems of the proposed mcthods arc investigated. As one aspect of noise reduction, 1he suppression or cancel-

lation of a chaolic inlerference signal is discussed

I. Introduction

In many cases, the study of nonlincar dynamical sys-
tcms and chaos has been motivated by the rclationship
between chaotic signals and random processes and has
caused many researchers Lo reconsider what is meant by
“noisc”. The dcterministic signal from a nonlinear system
may look like noise when displayed in either the time or
frequency domain, Much of the engineering work in this
arca has involved a scarch for applicalions of these
“noise-like” delerministic signals. For example, Cuomo
and Oppenheim [6] have applicd a chaotic system with
the self-synchronization property to the secure communi-
cations problem. They have exploited the characteristics
of the system to mask an information signal with the
noise-like chaotic signal. However, for their implemen-
tation, il the level of additive noise duc to the transmit-
ting channel excceds 10% of the driving signal, synchron-
ization will not oecur. Therefore, for their algorithm to
succeed at low signal-to-noise ratios (SNRs), a noise re-
duction algorithm is necessary. Also, noise limits our
ability o extracl quantitative information from observed
signals [8]). Obviously, noise reduction is essential for both
the analysis and application of dynamical systems.

Unfortunatcly, conventional linear filtering methods can-
not be applied successfully 10 signals produced by chaotic
systems, because the signals have, generally, broad-band
spectra. Moreover, a simplc lowpass or bandpass liltering
can change significantly the Lyapunov exponents and the
fractal dimenston of the reconstructed attractor [8). To
data, several methods [8], 9], [10], f11], {12]) have been de-
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veloped (o remove noise from chaotic signals. These
methods separate into two classesthose thal assume the
system dynamics are known and lhose thal do not know
the dynamics. Obviously, the latler case provides a ro-
bustness al the cxpense of performance. The choice of
which method is suilable depends on the characteristics of
application. For instance, in securc communication ap-
plications [6], [7] it is assumed that the dynamics of the
system are known. In this paper we will consider the
noise reduction methods which are applicable only when
the system dynamics arc known.

Farmer's method described by Farmer and Sidarowich
[10] has nice performance in mild SNR circumstances.
However, ils structure is relatively complicated because it
combines the manifold decomposition procedure and
singular value decompaosition for the inversion of a large
rank deficient matrix. Therefore, we propose two classes
of gencralized iterative noise reduction schemes for con-
taminatcd chaotic signals which are simple and casily
implemented. One class ol these proposed methods esti-
mates the deviation of the obscrved signal from the near-
cst noisc-free signal and uses the result to get a noise-
reduced signal. To calculate the deviation our techniques
minimize a cost function compased of two parls:one con-
taining information thal represents how closc the enhan-
ced signals are to the observed signal and another com-
pased of constraints that fit the dynamics of lhe system.
Another class of these methods tries to enhance the ob-
served signal by iteratively secking the signal minimizing
a cosl lunclion. Members of these classes vary as a result
different choices for the parts of the cost function. We
will show via numerical simulations that some versions of
thesc schcmes have beller performance than Farmer's
method for relatively low SNRs.
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. Farmer's Method

Suppose that we have an M-dimensional nonlinear dis-
crele-time dynamical sysiem' described by a dillerence

equahion:

‘n+|;f()(n). n:'O,I.l'"

where x. € RM is lhe stale vector point at time » and f:
RM > RM descnbes the dynamics of the system. The sol-
ution x,, »=0, I, 2, -+ of the difference cquation is
called an orbit. When the point x,; is contaminaled wilth
additive noisc x, and we obscrve the noisy poinl yn = xy
1 w,, our goal is o clean the noisy point y, 1o cslimate
the noise-lree poinl x,; .

Farmer and Sidorowich [10] have used the Lagrange

multiplier lechnique (0 minimize the cosl function:

N=1 N-2
E |IJ'n_‘xn"2 +2 S /\:[f(xn)_xni-liv
LEls n=4

where A, indicales the Lagrange mulliplicrs al time 7., X,
is an enhanced poinl, and N is (he number of observed
data points. IF we define several variables: Ay = % — Xy, Oy
=y, — X 11y Tn = X 11 — fx,} and assume A,=0 lor n< 0
or > N~1, we can arrive al two lineacized iteralive equal-
1005 to be solved by laking the derivatives of the cost (un-
ction with respect to X, and A and setling them (o 2¢ro.
That 15

(bn =7 f(ﬁn)' /\n —Au- 1= An
A1 =D () An + T,

where D f(xn) is Jacobian of f(-} at x,..

The above two equalions can be cast into matrix form

as follows:
-1 D f(xa)
Dfixg) 0 -1 0
~1 -1 Df(x)
D f{x) 0 —1
0 DFf(xy.2) 0 —1

- -1 ]
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Ay ®o ]
Ao ~To
My By
Ay = —T
An. > = Ta. >
L Ax o L Pu-)

and solved by inverling the malnx to get Ay, the devi-
ation of the enhanced poinil from the lrue point. This ap-
proach works well for short trajeclory segments, ie.,
small N, but the matrix inversion can be computationally
expensive. The so-called manifoid decomposition method
introduced by Hammel [9] is a fast and efficient technique
that avoids this matrix inversion. It cxpleits the shadow-
mg properly of chaotic systems thal a deterministic orbit
can be {ound that is arbitrarily cluse to an observed noisy
orbit |91, (10]. The noise reduction problem tor a chiotic
system can be viewed as sccking an approximation to the
truc orbit by finding the optimal shadowing orbit. The
manilold decomposition method will be explained briefly.

Il The teial solution x would be complete (noisefree). then
X = f{Xn-1}. L&t D= Yoo and N, =F{yn-1} —yn. Assum-

ing X, is close to ya. we can gel
By D f (X} — T, m

For the two-dimensional case, il e, and ¢, arc unit veet-
ors in the expanding {unstablc) and contracting (stablc)
directions, respectively, then H,; and @, can be decom-

posce mto (wo directions,

I, = gnen 'F{ncn
D, = ey +ﬁnfn

For higher-dimensional cases, [T, and &, can be doecom-
pased inlo stable and unstable subspaces. Since V., #=10,
. N =1 can be calculated from N observed points, {4
and E,. n2=0, -, N—1 are easily obtained. Two iterative
equations lor @, and £, can be obtained by plugging the
above (wo equations into (1} and considering for each di-

rechion

Qan +) +‘:”.+L

I FZCSIN|

ay— " ay- =10

Bn 1= Bn I F(Xndexl —fut+1. Bo=0.

' For convenience, only discrete-time dynamical systems ace considered in this paper, though continuous-lime dynamical systems may

be trealed in much the same manner.
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Once we have a, and £4. we can calculate the deviation
term @, and then the estimated true poinl using ®y,.
Although the manifold decomposition method is fust, it is
less accurate in the presence of homaoclinic tangency [10],
which occurs when the stable and unstable directions are
nearly parallel. For points where homoclinic laogency
occurs, Farmer and Sidorewich applicd their Laprange
mulbiplier approach. However, homochinic langency may
cause the matrix 1o be nearly rank deficient. In this case,
the matrix inversion is accomplished by using Singular
Vialue Decomposition (SVD).

Consequently, the manifold decomposition method and
SVD are often combined such that the manilold de-
composition method is used except for those points where
homoclinic tangency occurs and SVD must be apphied.
llowever, combining the manifold decomposition pro-
cedure and SVD may be inconvenient when Farmer's
mcthod 1s applicd to rcal systems, and SVD may require
too much computation. Therefore, we suggest an iterative
scheme for processing conlaminaled chaolic signals that

has a ssmplc structore.

. Generalized Iterative Noise Reduction
Methods

We will consider (he noise removal process as a con-
stramned oplimization problem. Consequently, when we have
a function ¢)x, ¥y} to be minimized with respecl (o X, un-
der conslrainls ¢x(x)=0, a constrained cosl function € can
be defined using a weight function T' (which couid be a
scalar or a matrix according (o the form of (- )):

C=ci(x. y} +T exx). 2

The function ¢(+, +) should measure the closcness between
the enhanced points X, and the noisy points y. . The Euclid-
ean distance between X, and y, is an example of an accepl-
able cil-,-}. Allernalively, the correlation belween X, and
¥x s also a suitable choice lor a ¢y(-,-), bul it musl be
maximized instcad of minimized. There exisl many other
candidates for ¢,(-,-).

The constraint function ¢x(-} should be chosen to 2nforce
the dynamics of the system. For example, f £(-) and 7'
(-) inidicate the forward dynamics and the backward {in-

verse) dynamics, respectively,

N-l- Ly [ i
CE(;(): E Z iifk(;‘n)“‘;(n -H.»lP +z Hf_k(in)_;‘n—k"z
n=14, k=1 k-

K))

is one possible choice of ¢;(-) tor some positive integers L,
and La, where f4-) and f*-} indicatc the k-lold com-
position of Lhe forward dynamics f{+) and (he backward
dynamics / '), respectively, and N is the number of
available dala points. I £ ~'(-) does nol exisl, the second
term of (3) can be ignored.

Given ¢(-.-} and ¢x(-}, we can find a solution by la-
king Lhe derivalives of €7 with respect to x» and T, and sel-

ting them 10 zero.

r'f-(' _ ﬁcq(f. y) (7Ci(7;) —0 )
d%n Xy Xy

0C .

= (x) = 5
T c(x)=0 (5}

We wanl 1o find X salisfying both (4) and (5). In mosl
cases, U is not casy Lo gel a closed form solution because
of the noalincar lerms in cquations (4) and {S). However,
we can cstimate the deviation {noise} term or the solution
eratively.

The molivalion for (he proposed scheme stems from
the so-called “iterative method™ for solving the lincar sys-
tem Ax="b [16). When the amount of compulation in
solving Ax —b =0 is excesstve, we may choose to settle lor
an approximalion X, lhal can be oblained more quickly.
In many cascs, il is possible o develop an ilerative me-
thod that, for any initial point, can produce an improved
solution x*' at the i-th iteration from (he previous iler-
alion’s solution. x¥ P, thal converges (o X as the number
ol iterations increases. One common approach ix to split
the matrix A. M A = A, —A;, (hen the equation Ax—h -0
becomes A x — Axx —b =0, Therefore, we have lhe iterut-

tve scheme for sotution :
AV =Ax !t b, )

This method requires that Ay should be a simple malrix
to inver(, such as a diagonal or triangular matrix. Also,
the iterative method (6) converges for any starling point
il and only if the magnitude of every cigenvalue of A" A,

18 less than 1.

A Method )

Next, we apply this iterative approach 1o solving the
nonlinear system ol equations given in (4) and (5). When
choosing suitable functions ci{X, ¥) and cx{x) and constant

', we can arrange (4) in the following form

Xe— ¥ HRX, y}=0 7)
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for somc nonlinear function A(-,-). Since ¥n= X, +w,.

under the assumplion X, ¥ x4, oquation (7) gives
Wwo = B(X, ¥). (8)

Although A(x. y) may contain w, terms as nonlinear com-
ponents, we can assume that w, in cquation (8) is an esti-
matc of w, should satisfy cquation (8) as long as x, is son
close 10 x,,. Thercfore, 1 the spinit of equation (6) for lin-
ear syslems, we may cstimale the noise {deviation) compon-
cnl using equalion {8}, and an canhanced point can be com-

puted itcratively by selting x4« x%°"

—w, until lhe sol-
ution converges. Clearly, w, may not be a good estimale
for the first several ileralions, especially, when the SNR s
very low. In those situations the terms in %-{*x) assoclaled
"Xn
with the dynamical inconsistency ol the noisy poinls may
produce an unacceptably large correalion term w, causing
the solution X, to diverge. This behavior may be overcome
by weighting the correclion term w, with a constant X ac-

cording to a Lhreshold o.

il lw,ll <d
i lwall >3 C)]

- 'Kl\;'.. Wi(h K|=]
w, = )
T lKkow with 0<K, €1

If zero-mean while Gaussian noise and an M-dimensional
dynamical system arc assumed, the [ w12 possesses a X7 di-
slribution with M degrees of freedomy. Hence the probability
density of llwall? can he calculated if we know the vari-
ance of the noise. Thus, using the distribution of Twal. a
suilable & may be found.

So, to estimale the ¢nhanced dala, we updale cach

point in 1 manner analogous to equation {6)

X Ky R ()~ KRS

=x. "KW, (10)
"‘:‘, femph _ i{;""—K| ‘-"(-?
Wy =h(x " ) (n

for a weighting constant 0< K> < §. In these cquations x'7

and x“" are the enhanced points al The present i-th iler-
ation and at the previouws (£ —1)-th iteration, respeclively,

>, fomp)

as before. x'; is an intermediale enhanced point at the

present 2-th iteration using #{- -). Since X is related lo
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both the convergence speed and stability, il is efficient 1o
set K» to a relatively small value for the first several iter-
ations 1o guarantee stable convergence and then 1o use a
relatively large value for later itcrations to achieve faster
CONVCrgence.

The iterative update scheme can be cstablished as fol-
lows {Proposed Mcthod I):

1. [nitially set x¥' =y,.

2. Istimate the deviation term w, using (1 1).

3. Weight the cstimated deviation wy to avoid unaccept-

ably large correclions using (9).
4. Compuler a new poinl using (10).
5. lterate steps 2-4 until convergence.

B. Method I

In Mcthod 1, we need to find svitable values for fwo
weighting constants K, and K:. This disadvantage can be
alleviated by estimating the enhanced signal X, itsclf in-
stead ol the deviation term. We can arrange equation (4)
with respect to X, including the “lincar”™ terms to get the

following lor some nonlinear function g{-, -}
X = glx, y). (t2)

Since cquation (12) must be satisfied whenever the enhan-
ced point X, converges to the true point x,,, we can estimate
the enhanced point of the present iteration, X', by using
g0x ¥ " y). This result is based on the same concepl as

that behind equation {6). We can update a point using

iu.:-; - K_x "‘1': teaph +(] —K]) ;2 -

=§',f"' 'l'K"I i{’:‘_umm_i:-nl (13)

X o g(x 1 y) (14)

lfor a weighting constant << K3 < 1. If we rearranged (4)
with respect to the X, to include both. “linear and non-
linear” terms, this method would tend to be unslable, since
the nonlinear lerms, in peneral, are very sensitive 1o noise
and may make this iteration diverge?. Allhough the re-
quirement in our original molivation suggested that the
matrix A, should be simple motivates the use of “linear”
terms only in order (o get equation {12), our investigat-
ions via numerical simulations show that this condition in

mast cases also resulls in stable convergence of this

? Let's consider the equation x =~y Fxy +x' t3x { v3 =0, This equation can be arranged in scverat forms : for cxample, x = ] (y—xy

— 3yl =
¥’~yYorx S ra

(¥ —x¥ =), The former form would have belter convergence characleristics than the Jatier form.
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method.
The iterative update scheme can be established as fol-
tows (Proposed Method 11):
1. Initially set x =y,.
2. Estimale an enhanced signal x, using (14).
3. Computer a new point using (13).

4. Itcraie steps 2-3 until convergence.
V. Examples

To get some insights, we will derive the key equalions of

the proposcd methods [ and II tor a given ceosl lunction.

A Exampie 1

Ln this example, we consider €i(x, y) to be the Luclidean
distance between the enhanced points X, and the noisy po-
ints y,, ¢2(+) to be given by (3), and the weight function
I'=1. That is,

N-1

ald, Y=L lIx.—yal?
n~0
L 3 R 1, . )
= L {3 1)~ il +L uf-*(x,a--xu-knz’l.
wefy | Aol =1

For systems in which the inverse dynamics do not exist,
the last term of c(x) may be ignored. However. in other
cases it improves the performance of the melhod
If we lake a derivalive of € wilh respect to x» and set
il to zero, then we get the following result, corrcsponding
to equation (7).2
. Ly . . .
Xn—Yn + L DS [ SHR} X )
k=1
I
+ 3 DS | S M%) = X1 |
k=1
Ly . N
- z [fk(xn—k)—xn]
R=1
i - .
=¥ S M) —%a | =0, (15)
k=1

where Df*(-) and Df (-} are the products of the Ja-
cobians of f(-) and f~'(-), respectively, defined by

DG = TT DS Gin )

A=l
N/ 4x,) = U DS~ '(Xn-i).
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Since yn =Xy +w,, if the trial solution X, is close to X, i.
€., Xn = X, lhen we have an equalion for the deviation est-

imale corresponding o equation (11).
RS o VACRI VLR
+;§| Df *n) [ £ 4G ~%-s]
—F_I [ F4Gin-8) — X | —L [ £ #n 10 =X |

This deviation estimate docs make sense when we con-
sider the casc when the enhanced point x, is converging (o
the true solution x». If X, = X,, the right hand sidec (RHS)
ol the above equation is nearly zero, resulting in only a
small corrcction being made in the update equalion (19),
Qn the other hand, we can get an equation corresponding
to equation {14) by re-arranging cquation {15).

. [

Ly
. —_— - ¥ Re kil _2 ]
L L :’" . D45 | £H5) = 11

= £ DS G [ £ ) Rnca] + S M)

15
+Y f M H)}

k=1
Similary, this signal cstimator appears 10 work when we
consider the RHS of the above cquation under the as-

sumption X, & x,. In that case we can sce from the up-

date cquation (13) that the correction term is approxi-

X3
——————— w,, resulting in only a small correclion.
V4L +L &I ony

Therefore, we can gucss that a smalier K5 will give beller

matcly

performance. In Section V we will see. however, that a
smaller value for K slows the convergence.

Since noise (perturbation) componenls in an enhanced
orbit x may cause the f*(+) andfor f *) terms to di-
verge with cvolution, £, and L, should be small for low
SNR cases, while larger £, and L; may be acceptable for
high SNR cases. The determination of L, and L. is as-
soctated with the Lyapunov cxponents of the system. To
explain this, consider the two-dimensional Hénon map?
with Lyapunov cxponents A =0.42 and A;= ~1.62. The
rate of change of a state periurbalion along lhe unstable
direction is approximately proportional to %" for for-
ward cvolution and ¢7*” for backward cvolution. This

relationship implics that the rate of change of a state per-

1 Obviousty, in this cxample, we cannot get the enhanoe&. i:;oinls forn<L,andn>N-L,—1I.
* The dynamics of the two-dimensional Hénon mayp are given in equation (25).



turbation for backward evolulion is larger than for for-
ward evolulion. In order 10 gel the same rate of change
along both the stable and unstable directions, we tnusl

choose Ly and L; such that

ALY - R ST

This condition imphes that £.; should be smalier than £
for the Hénon map when L) is chosen to guarantee stable
convergence [17). Obviously. choosing £, =1 and L= 1 1s

the safesl way for stable convergence for low SNRs,

B. Example 2

In this cxample, we choose ¢{X, y} associated with the
correlation coefficient between the enhanced point x,, and
the noisy point ¥y, and ¢:(x) as the simplest case ol cqu-
ation {3) wilth L, =1, and the weight function T'=1. The
backward dynamics ar¢ not considered in this case, 1.¢.,
L,=0. Thus

Xﬂ i: ¥
VEa 1317 S lya 12

Cl(;(. )‘)= -

cAxy= T ALFOG) =% 0l
"
When we compare Lhis cost function with Lhe cost Tunc-
tion in Example |, we observe that this cost function, in
effect, weights :(-) by N.
Under the assumption thal X, = X,, we obluin an cqu-

alion corresponding to equation {11}:
\.V,. R 2Nnym, D,f(i,,)[f(i,,)—in +||

— 2V mom, [ flkn )= %) +["7’;1- -|] . {16)

where 7 = ¥ 1Xall%, 722,= T byall2 and m20, =Y X7y
Similarly, we can gel an equation corresponding o equ-
ation (14).

. me -

= n—2 - D { n
gy + 2 N 02y by ety DS (xa}
[ f (%) =% +1) +2 omemm, f(%,- W (17

When we investigate cguation (16), assuming that the en-
hanced point is converging 1o the true solulion, the RHS of
equation (16) is close Lo zero because mey is, ideally, cqu-
ivalent 1o »2, for large N. Thus, only a small correction,
K1 K2 Wy, is performed in the update equation (10), giving
validity to using cquation (16} as a deviation estimator.
Similarly, il the RHS of equation (17} is subslituled inlo
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the updaic cquation {13) under the assumption X, = X,
K3

only a small correction, approximately ——————=="
142 Vmem,

Wy,

15 mide.

V. Convergence Conditions

As wilh most discussions of convergence conditions, we
will demonstrate requirements for local convergence with
no puaraniees of global convergence. However, from the
resulls of the numerical experiments given in later section,
we obscrve that cven Lhe local convergence achieved by
these methods s relatively close 1o the true solution.
Therelore, we witl investigale the conditions on these
methods that will guarantee local, butl not necessarily glo-
bal. convergence.

In is not casy (o derive general formulas lor #(-,-), g
(.-} Ky, Ky, and Ky thal goarantee convergence, How-
ever, by choosing Ky, K>, and K» such that the deviation
from the (rue solubon at the Z-th itecation is smaller than
al the 7 - 1)-th one, we can have some conlidence 1 con-
vergence (o the true solution. Thus, in order to gel an up-
per bound on Ky, K;, and X, for convergence, the follow-
ing incquality should be solved with respect to these con-

slanls.
EL I —xll? = " —xedl? | <0

Solution of tlus inguadity using the knowledge of the sys-
tem dynamics and the formula for cxpeeted values of
higher moments is only straightforward for £=1, bul this
case 1$ not sulficient 1o guasanlee convergence.

Anolher crilerion for the convergence of Lhe proposed
algorithms can be found by examining the conditions un-
der which Lhe correction lerm goes o zero with iteralions.
To «etermine these conditions we will consider a ltheorem
associaled to the stabilily of a system [13].

THEQREM 1 Given a dynamical system X, = f(Xx-1)
where f{0) =0 for all n, suppose therc exists a scalar fun-
clion F{x,} such that ¥(®) =0 lor all #, and

1. F{xy) is posilive definile for all 2 and all x,, 7 0,

2. AV, =P f () =V xa)< 0 Tor all 2 and all x,, # 0,
then the equilibrium state {origin} is cquiasymptotically
stahle and VP (x,) is a Lyapunov function of the system.

In order to see whether the correction lerm goes (o
zeeo wilh ilerations, we necd Lo sce whelher the origin of
the correction syslem is stable. To investigate it, we con-

sider the energy function as a Lyapunov function candi-
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date’ for the correction system
Vixn) = Ixall? = X7 X (18

First, let's consider the correction system associited with
proposed Method [. From the update equation (10), if
the correction term w'? — 0 as 7 — oo, then x¥ =x*"", im-
plying that x converges. Thercfore, il we can find a con-
dition on KK, guarantecing w¥ =h(x“ ", ybo0as 7~
00, it would serve as a gusdcline for choosing K, K> . Using
cquations (10) and (11) and the Taylor series approxi-
mation for A(x, y) we can get the following correction

system for the method corresponding lo equation (11).
;‘,::n;:h(;‘m)

=h (XD =K K (x¥")

= [1- K K: DAY )] AlxY)

=t

[1-Ki K DAGY 4" | A(x®)

k=0
i-)
=TT [1-K K DR 5 )] Wy
k-0
-1 ) .
= l_[ Clln-b--liwi':}‘ (I9)
Frs
where DA(x"*) is the Jacobian of &(-,-) at x*. To inves-
tigatc Lhe stability of the origin of the correctior. system
given by equation (19), let’s apply the stahility theorem to
the Lyapunov function candidate in equation (18). Then,
we obtain the following result.
BV (AGD) =V {[1- K K: DA | Ax)) -1 (R(x D))
= [V =K KD RED| A |~ fa(x )2
— h(= T < mr
=AY {[5- K KD RG]

[ 1=K K DAGD) | -1} R(x9)

=h(x)7 {CYTCP -1 ] A(xY (20)
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From the theorem, if AV { A(x %)} <0, the origin of the cor-
rection system is stable and this algorithm is convergent.
Therefore, we see that this algorithm will converge if €4
C'"—1 is nepalive dcfinite for all £.7 Since the conver-
gence malrix contains K, K>, we can gel convergencc
condilions by choosing K K: such that CP" CY-1 is
negative definile. However, we cannol gel a closed fortm
expression lor the convergence conditions on K)K: o
make C7 CY - 1 negalive definite, since DA(-,-) is gener-
ally asymmetric and all possible X must be considered.

Thercefore, by investigating Lhe largest singular value of
[T, C " in equation (19) as £— 0 we suggesl @ “nu-
merical criterion” for delermining bolh an approximate
range on the weighting constants K, K2, and K3 and whe-
ther the selected nontinear functions &(-.-} and g(-,-) are
suitable for noise reduction purposes. If the Jargest singu-
lar value [T, L CY* " approuches zcro as i — w0, we sce
that w% —0 from cquation {19} and the algorithm is con-
vergenl. Therefore, this roule can be used to acquire the
informalion needed for the convergence of the algorithm.
Unfortunalely, the product of the convergence matrices is
difficult 10 calculate because the system evolves along the
iteration index 7 inslead of along (he time index » and we
do nol know x™ for all { a priori. However, we propose
to calculate the range of Ky K> lfor which the largest sign-
ular value of the producl of the convergence malrices ap-
proaches zero along the noisy orbil y,. We expect this
range to give suitable information for convergence, be-
cause €V can be regarded as a sequence of random mair-
ices whose elements have finite mean and vaciance, and
the growth rale of the system given in equation (19} is
bounded by the largest singular value of some matrices of
the sequence [15).

Figure 1 shows an experimental result Tor the largest
singular valee of the product ol convergence matrices in
equation {19) for the two-dimensional HéEnon map afler ap-
plying the algorithm lor 200 iterations for variows K, K».
The SNR was [0 dB. From this experiment, we can see that
the suitable range for convergence is approximately be-
tween 0.0003 and 0.0014. The lower bound of X(K;=10.0003

comes from the following fact 1if X\ K, = 0, w'? = w'!' from

$ This energy funclion is considered frcquently for many physical systems. However, this Lyapunov function candidate is not suitablc

for determining the stability of every physical system. Nonclheless, if we can show the ¢xistence of a Lyapunov funclion for the given

correclion syslem, the exact convergence condilions can be described by determining the ranges of the weighling constants and proper

K- yand g(-,-) (hat satisfy AV <Q.

s We assume that &, K £(x"~", y) is small enough that higher order lerms in ihe Taylor series expansion can be neglecled. If this is not

true, the result may be unreliable. To simplify our notation, we will not show the y term in A(x®, y).

* We will call C!” a “convergence matrix”.
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cquation (19) implying no convergence. Figurc 2 repre-
sents the change of the largest singular valuc with iter-
ation for various K, K;. The sum¢ sitwalion is assumed as
for Figure |. We can see thal the largest singular value
approaches zero when K, K lies in the appropriate range

for convergence.
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Figure 1. The largest singular value of [1 tor the two-
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Figure 2. Change in the largest singular value for the two-dimen-
sional Hénon map with ileration for various K, K»>. The
SNR is 10 dB. For the case K| X2=0.0035, the syslem
diverged.

On the other hand, since the growth rate of the system
given in equation (19} is closely related 1o the Lyapunov
exponents of the system® x ¥ — K, K> A(x ), we claim that

il the convergence syslem has all negative Lyapunov cx-

% We wilt call this type of syslem a “convergence system”.
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ponents, the origin of the correction system is asymptoti-
cally stable and the algorithm is convergent. By regarding
w " in cquation {19) as an initial perturbation, we see that
the value of w ™ as 1 — o is independent of the initial pes-
turbation, il the convergence system has all negative
l.yapunov exponcnts. Therefore, we cun get an approxi-
mate range on suilable values of K K; by finding (hose X,
K> for which all the Lyapunov exponents of the conver-
gencee systcm are negative. Il there exist no values ol K\ K>
for which all the Lyapunov exponents of Lhe convergence
syslem are negalive, we must consider another form ol A
(-.-). As belore, we propose to calculate the range of X,
K, for which all the Lyapunov exponents of the conver-
pence syslem are negalive along the noisy orbit y,.

Figure 3 shows an experimental resuft for the estimated
Lyapunoy exponents of the convergence system for the
two-dimensional Hénon map for vanious choices of K K>
and SNR. We applicd the method described in [5] to esti-
male the Lyapunov exponenls. One Lyapunov exponent
appears 10 be negalive for all K, K> and SNRs. However,
lie ather Lyapunov exponcnt is nol always negative. Ob-
viously, Lthe results for a SNR of 10 dB is very similar to
the results in Figure 1.

Lyapunov Exponents

KiK2

Figure 3. The estimated Lyapunov expencnts of the convergence
syslem of equation {16) for the two-dimensional 11énon
map (or vatious KK and SNRs. One Lyaputiov
exponenl is plotled wilh a sohid a sohid line and other
wilh a3 dashed line. The method described in [5] was
applied 1o estimale the Lyapunov expoencnts. The SNRs
awe 17,10, 7,5, 4, and 3 dR and ¥ - 200.

Nexl, let’s consider the system corresponding 1o pro-

posed Mcthod I1. To gel an approximate range for Kx in
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the same manner as before, we find the convergence sys-
tcm of g(-,-) and observe all the Lyapunov exponents of

the convergence system. From equation (13), i’ a corree-

tion system given by e = x

tempt _ “ti- 1
" Xy

—0as {—0, the
algorithm will converge. We consider the following equ-

ations oblained using equation (13) and the Taytor series

cXpansion.
c(’:l = x(:ump}_xﬁ—ll

=g(,;a—21 +K]éﬁ--n) _xbn
& g(x" V)XY LK Dg(x D) e
=| (=K1 + K Dglx4-D) | &6

ST [0 =KD +K: Dglze-#) | &0
k=2

=f] c¢»e (21
k.2

If the origin of the correction system e i is stablc. then e *'

~ { as 7—o0 implying convergence of this method. Simil-

ary, recalling the slability theorem and the Lyapunov

function candidale in cquation (I8), we can derive a con-

vergence condition for this algorithm.
AV(ED)=¥ ([(1 -k 1+ Ky Dgtx ) | e¥) = (&)

=} [ =KDV +K: DO D] €9 P~ e

=e [0 —KD I+ K Dg(x“~")]
[0 —&N + KD -1 ] &?
=€ {CcyT ey -1} é? (22)

As before, if AV (€2) <0, then this method is convergent.
Therefore, we have the convergence condition that requ-
ircs the matrix CY"" C¥—1 to be negative definite for all 7.
As before, we cannot get exact closed form conditions of
K; and g(-,-) such that this condition is met for all x,
Therefore, we consider the convergence system of this
algorithm to get an approximate range on Ky and g(-,-).
In this case, the convergence system is (! —K)x" + Ky g
(x"). I the convergence system has all negative Lyapunov
exponents, € ¥ should converge to the origin as { —0. As
before, we can get an approximate range for Xy by ident-
ifying those values of K that allow all the Lyapunov ex-
ponents of the convergence system to be negative. If there

exists no upper limit on K3 for which all the Lyapunov
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exponents of the convergence syslem arc negalive, we
must try another form of g(-,-). Figure 4 shows an ex-
perimental result for the Lyapunov exponents of the con-
vergence system of equation (17) for the two-dimensional
Hénon map according (o various K3 and SNR. Thesc
Lyapunov cxponcnls were also estimaled by applying the
method in [4].

An example lor appropnate range of K3

15— —y -

Ly2puras Expanerts

15F
S T S G S SO S |
0 0.0s o Sb 02 025 0.3 035 0.4 045 [o3]

K3

Figure 4. The cslimated [yapunov exponents of the convergence
system of equation {17) for the Iwo-dimensional Hénon
map for various Ky and SNRs. One | yapunov exponenl
is plotted with a solid hne and other wilh a dashed hne.
The method described in {S) was applied Lo estmate the
Lyapunov exponenls. The SNRs are 17, 10, 7, §, 4, and 3
dB and N = 200.

V]. Error Systems

In this section we will obscrve Lhe sleady staie behavior
ol the error syslem of lhe proposcd methods under the
assumplion that the correclion system has a stable origin,
To see what happens to the proposed methods with iler-
ations, we will deftne an crror system as the difference be-
tween the true point and the cnhanced point al the ¢-th
iteration, i.e., ¢ = x,—x".

First, consider proposed Method 1. Using the updale
oguation (10), cquation (19}, and the Taylor series expan-
sion, we can derive the following cquations.

oW _ )
e, =Xp—X,

=86 4K Ky (RO

il
=e® +KK: ¥ MxUA
A0

=1

= ~wy +K\ K2 Y, A(x"*1)

t-u
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~—w, KK L

l T [1-K KD Ao+ )] h{i“’”}

=1
x-w, 1 KK ©
k=1

j r—k-?
l [ [I—KnK:Dh(i“'""f‘z']]l)h[x)lwn (23)

F-u 1

where we use the lacts that X&' =y, = x, +w, and, for the
true orbit x, A(x} = 0 as cxplained before. We observe
that the sccond lerm of the RHS of equation (23} is the
sum of lincar combinalions of w,, and, il the origin of the
correction system is slable. only a limiled number of
terms arc present in the sum. However, it is not casy lo
show analytically that the sum converges 10 w,,.

Second, consider the proposed Mcthod |1 and its error
system ¢! defined as before. In this case we sec the steady
state bchavior ol the error syskem more clearly. From

cquation {13), we have the following resull:

=xn— [ Ka x5 0 - K3) x4

=(1—Ked " +Kye?,

S — o a temp)

where €, = X, — X, . 1tcrating the above equation with

0}

respecl to ¢,

Lt 0 _

and recalling thal ¢ =%, = X" = X — ¥n. we gel

i

G-k el + T K-kt el
k.0

il
= (1=K wy + 5 K1 ~Krel ® (24)

PR

From equation (24), we see thal ¢ 0 as 7 -»o0 il we
choose Ky as small as possible because the initial error
terms cannot affect the whole ercor syslem as ¢-— 0 due
10 the scale factor (b — K5)%. On the other hand, il may be
more efficient to select K3 1o be close (o | for Tast conver-
gence due to the term (I —Ky). However, as shown in
Figure 4, Ky should be small enough to guarantee all
negalive Lyapunoy ¢xponents for the convergence sysltem.
Therelore, we can sce (hat there exists a trade-ofl between

fast convergence and slable convergence.
Vi. Separation of Chaotic Information Signals
Ia Lhis seciton, we will consider a separation techmique

for mixed chaotic signals thal can also be used as a can-

cellation technique for chaotic interference signals. Signal
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separation or cancellation can also be regarded as a noise
liltering problem. Chaotic signal scparation and cancel-
lution is necessary when we consider the smart jamming
amd multipath situations aflecting (he secure communi-

calions lechniques using chuolic systems [19]

A Augmented Dynamical Systems
When we observe a (vector) scquence v, that is the mixed

. . 2
wersion ol the sequences x! . x?
”n

no

ey x',; from £. chaotic
systems and all system dynamics f,, f.. -, f; are
known, the noise removal problem is 1o recover x,", xi,

cxbfrom v,=¢x) tex] to tepxt tw,, where
w, is while Gaussian noisc. From lhese assumptions, we
can scc (hat Lhe signal scparation problem is the same as
the slate estimation problem of the following “augmented”

dynamical syslem.

2, = )

v, =0z, + W, 2%

where 2, and F(-) are augmenled slate veclor and aug-

mented system dynamics, respeclively, defined by

1
z, = X,

F(Z,,)— fl (X" )

£r(x2)

f.r,‘(x';,)

and ¢ a row veclor defined by c=|¢, ¢; ++ ¢, ] for constant
values ¢;. i=1, 2, ---, I.. To estimale z,, we will consider
two approaches:the augmenled extended Kalman filler
approach and the augmented Heralive neise reduction

approach.

B. Augmented Extended Kalman Filter Approach

The Kalman filler has been designed to estimate the
slate veclor tn a lincar dynamical model. If the model is
nonlinear, a lincanzation procedure is usually performed
resulling in Lhe so-called extended Kalman filted EK¥)|14].

When an augmented dynamical system (25} is constructed
from the observed sequence v, and knowledge of the sys-
lem dynamics f;, =1, 2,---.L, the nonlinear model (25)
1s approxmtated by the linear model oblatned using the

lincar Taylor approximalion of F(z,) at a predicted state
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veclor i,,:
Flz,) ~ F(z,}) + DF(z,) (z,—17,),

where D F(z,) is the Jacobian matrix of F{-) at z,. When

formulate z,, = i..h, using the predicted statc vectors
in-{ Hn = F{in)‘
we can gel 3 (approximated) linear dynamical model

T, =DFE,)z, +u,
"n = czn + wﬂ' {26)

where w,= F(z )~ D F(zZ )z ,. This lincarization is useful
only if’ io has been determined and, in most cases, io=E
{zo1. From the Kalman filtering results for a linear model,

we get the correction formula
Ly =Zppnt + Golv,—CZa1,-0),

where G, is the Kalman gain matrix for the linear model
(26) at the #-th instanl. The resulting filtering process is
called the EKF for an augmented systcm (25).

The filtering algorithm may be summarized as follows:
Inilial conditions:

*Pyy=Variz,)}

*2o=Elz)}
Forn=1,2, 3,

A DF(in-l)Pn-l.n-l DF(in W

¢ iul»-: = F(i»-x}

R, =Var{w,}

*G, =P, " (el 1" +R,)!

*P,,=(1-G,0)P, ,.,

hd i,' = ;‘nln—l + Gn{'n"':;nlx—l)

By appling the above algorithm, we can cstimate the

x!.

augmented state vector z, to get x|, x, -, x%.

C. Augmented Hterative Noise Reduction Approach

We can treat the chaotic signal separation preblem in
the framework of the generalized iterative noise reduction
mcthod described in the previous sections, whenever the
observed scquence is cast into the form of the augmented
dynamical system given by equation (25). If the augmented
system (25) is given, a natural and simple approach is to
find the enhanced point z ,, that minimizes the {ollowing

cost function:

C=Xlv,—cz, I+ Xz, 1, — Fz M2 on

L3 n

- C . .
From the condition -aA =0, we can get an equalion delin-
Z,

ing the estimate ;,,. For example,
2,= (= 2,)¢" + Flen-1) + DF(z,) (2,4, ~ Flz,).

If the above equation salisties the convergence conditions
mentioned in Section V, we can eslimate the augmenied
z, by applying Method 1l proposcd in Section 11[-B. This
approach is simpler than the avgmented EKF approach.
However, this approach has a weak poinf in that it does
nol wse the knowledge of the system dynamics f;, i =
1, 2, ». L “interactively” while it (ries 1o find Lhe signal
that is close to a v, that is corrupled by other signals.
This is clear when we oberve that D F(-) is a block diag-
onal matrix. On the other hand, this approach can be
considcred within the framework of the generalized iterative
noise reductton method and can be applied to general

situations, as can the augmented EKF approach.

D. On Concellation of Chaotic Interference Signals

For the chaolic signal scparation problem, it is not
always possible to have all the information about the system
dynamics f;, 1=1, 2. -, L. In may smarl smarl jamming
scenarios, the system dynamics for the jamining signals
are not available. Since wanl to remove the jamming
signals without any knowledge of their syslem dynamics,
we will consider the cancellation instead of Lhe separation
of these chaotic interference signals.

When we observe v, composed of an information signal
x| generated by lhe given system wilh dynamics f|, the
interference  signals, and additive noise, and want to
extract x), , the only viable approach is to treat the jam-
ming signals as noise and apply a noise reduction method
using the system dynamics f,. Onc issuc in applying a
noise reduction method Lhat uses system dynamics is how
to select an “mitial solution” that avoids local minima.
Because an interference stgnal with a dominant mcan
value can move the initial solution v, away from the true
solution, an interference signal with a mean value far
away lrom the mean value of the information signal x
may lead the solution to local minimum if we choose the
observed signal v, itself as initial solwlion. Therelore,
from our experience with the interference cancellation
problem, we recommend sctting the initial solution as

lollows:
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1 .
\'"—T"."\f"‘i‘b{x;} (2“)
where E{x)} can be calculaled by using the knowkdge f,.
In summary, we may remove the interfercncc signals by
applying a noise reduction method that uses the system

dynamics with the initial solulion given by equalion (28).

V1. Numerical Experiments

For the noisc reduction problem, the performance of
the proposed noise reducticn Mcthods I and 11 is com-
pared with that of Farmer's method for white Gaussian
noise. The sensitivity ol the proposed noise reduction
methods to the homoclinic langency problem is investi-
gated. For the problem of chaotic signal separation, the
performance of the augmented EKF approach and the
augmented iterative noise reduction approach s investi-
gated. Also, for the problem of chaotic interference can-
cellation, the effect of the sclection of the initial solulion
is demonstruted. The performance is discussed from two
viewpoints : that of the truc error and thal of the dynami-
cal error. The true error is defined as the diffcrence be-

tween the noise frec-point x,, and the cnhanced point )2,.:
cl,n=in—xn- (29)

The dynamical error is defined as the inconsistency of the

dynamics of the enhanced data X'
e?.ﬂ=§n_f(iu-l)' (30}

A. White Gaussian Noise Case
In this section noise reduction results are presented for

the two-dimensional Hénon map |11 which is governed by

Xoas1=1—14x7, + %,
X2 ) =03% 31

Figurc 5 shows the mean squared error (MSE) for cach
coordinate of the true error and the dynamical crror
according lo various SNRs after Farmer’s method, the
proposed Method 1, and the proposed Mcthod 11 are
applied to anoisy two-dimensioanl Hénon map. In both

cascs we used the cost functions described in Seclion
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1V-B. The proposed Mcthod 1 was iterated for 200 times
with K, =0.06667 and K,=0.003, whilc thc proposed
Mecthod [T was iterated for 200 time K,=0.08. Farmer's
mcthod was iterated for 20 limes. The corrupling noise
wits addilive while Gaussian noise. The proposed mcthods
have shown beller performance than Farmer's method
wilh regards to both the truc crror and the dynamical
error. Also, the proposed Mcthod II is more convenient
than the proposed Method 1 since il requires only onc
weighting constant X;. Though the proposed scheme
requires more ilerations than Farmer's mcthod, it still
requires fewer computations than Farmer's method.
Morcover, ils struclure is much simpler because Wl docs
nol requice the matrix inversion or SYD calculation
required by Farmer’s method. From this result, we can
thit the proposed methods have better performance at

refatively fow SN Rs® than Farmer’s method.

{a) (b)
O
.
S -20
=20 =-30 |
) 8
-4
o 1g 40
= 40 =50 NS
60 ~
-60 =70 -
() 0 20 30 40 () 10 20 30 40
SNR SNR
(© (d)
o -20
- .-
20 N
@ A~ @40
240 DN g
2 o~ = .60
60 I -
D - 80
a 10 20 3 an ° 0 20 30 an
SNR SNA

Figure 5. The mean squared errors for Farmer's melhod {dash-dot-
ten}, proposed Method T (dashed), and proposed Method
11 {solid} for the Hénon map according 10 various NRs.
The subfigurcs depicl (a} the true esror for the first coor-
dinate, (M) Lhe (rue error for Lhe second coordinate, (c)
the dynamical crror for Lhe first coordinate, and (d) the
dynamical error for the second coordinate.

Figure 6 compares the sensitivity of proposed noise
reduction Method [ to the homadlinic tangency problem
with that of Farmer’s method. Farmer’s method and the
proposed Method | were applied to the noisy two-dimensinal
Hénon signal with a SNR of 8 dB. The first subfigure

depicls the logarithm of the estimated angle between the

% 1n high SNR cases, for example over 20 dB, we observed thal Farmer's method shows better performance in the true error of the first
coordinate of the lwo-dimensional Hénon map. However, our goal is a method with good performance at low SNRs (o be apphied to

applications of chaotic systems.



Filtering Techniques for Chaotic Signals

stable and unstable direclions at each point. Therefore,
the insiances with small values indicate where (he stable
direction and the unstable direction are nearly parallel, ie.,
homoclinic tangency points. The second and third subfigures
show the first and second, cespectively, coordinates of the
true error after applying Farmer's method. In the forth
and fifth subfigures the first and sccond, respectively,
coordinates of the true error after applying the proposed
Method I are shown. Clearly, we can see thatl the proposed
methad is less sensitive to the homoclinic tangency problem
that Farmer's method.
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Figute 6. The sensitivity of Farmer's method and the proposed
Method I to the homoclinic tangency problem. The first
subfigurc depicts the logarithm of the cstimated angle
between the stable and unstable direclions at each point.
The second and third subfigures show the first and sec-
ond, respectively, coordinales of the truc error afler
applying Farmer's method. The forth and fifth subfigures
indicate the first and sccond, respectively, coordinates of
the true error after applying the proposed Method 1.

B. Chaotic Interference Signal Case
In this section, the results for chaolic inlerence signal
separation are shown. We assume that a signal from the

one-dimensional Hénon map described by

= 1=14(x)?2 4032,

is corrupted by a signal from (he one-dimensional Logistic
map governed by

%2 =3.7x2(1 -x1)

and white Gaussina noise w, We observe the signal
v,=x) + xf‘ + w, and want to separate x) and x? from v,
We indicate SNR, is the signal-lo-noisc ratio between signal
x, and noisc w,. The signal to interference signal ratio,
SIR;;, is defined by

1
)
SIR;; = 10loge " N.—I , (32)
T ”x’ -x ||
—. 1 _ .
where X! = ):f":; xi and N is the number of dala
samples.

Figure 7 shows the MSE of the ture error and the
dynamical error for each signal according te the various
SNR,’s. For these simulations ¢=[1 1| and SIR,, was 1]
dB. For the results of the augmented EKF approach, (he
arrors gencrated during {ransients are ignored tn cakulating
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Figute 7. The mean squared errors of the original signal (dashed),

the augmented EKF approach (dash-dotted), and the
aupgmented iterative noise reduction approach {solid)
according (o various SNRs. subfigures depict {a} the (rue
ecsor for the Hénon map, (b) the dynamical error for the
Hénon map, {c) the true error for the Logistic map, and
(d) the dynamical error for the Logistic map. SIR,;= 11
dB. For the augmented EKF approach the errors
generaled during transient lime arc ignored.

1% Grassherger's method is nol described in this pap;r. Refer to [12] for algorithm,
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the MSE. for both types of errors, we can observe that
the augmented EKF approach gives good resulls at relatively
high SNR; while it is scnsitive (o even a small amount ol
noise. On Lhe olher hand, the augmented iteralive noise
reduction approach scems to be insensitive (o Lhe noise
but does nol improve sigﬁil‘lcanlly for high SNR/’s. In
conclusion, the applicalions of both approaches may be
limilcd because the augmented EKF requires high SNRs
{over 40} dB) and the iterative noise reduction approach

shows poor overall performance.

C. Effects Due to the Initiat Solution

In this section, the etfects of (he seleclion of the initiad
solution lor interlerence signal cancellation are demo-
nstrated. We assume Lhid the information signal is lhe
one-dimensional Hénon signal and thal we know (he
dynamics ol the information signal. The Logistic signal is
used as an interference signal, and no knowledge ol the
dynamics of the interference signal is assumed. The additive
noise is while Gaussian noisc with a 10 dB SNR,. SNR,,
was It dB. To remove the Logislic interference signal, we
applied Grassberger's method [12]'* and the proposed
noise reduction Mecthod I1 for (wo cases:case 1 assumes
that the initial is the obscrved signal itself and case 2 uses

the initial solution with equation (28). Each method was

GRASSOBERGER CASE PROPOSED N, CASE 1
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Figure 8. The true errors alter applying Grassberger’s methost and
the proposed noise reduction Mcthod 11 for Casce (. The
interference signal is from the Logislic system and the

SNR is 10 dB.
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Figure 9. The truc errors afler applying Grassberger's method and
the proposed noise reduction Method IT for Case 2. The
interfcrence signal is from the Logistic syslem and the
SNR is 10 dR.
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iterated for 250 times.

Figure 8 shows the true errors of the Hénon signal
aller applying both methods for Case 1. Both methods
failed to remove the interference Logistic signal. There
are several reasons for this result. The mean valuc of the
Logistic signal is relatively high which affects the mean
valuc ot the observed signal. Therefore, il we choose the
observed signal itself as an inilial solulion, 1t is from the
true solution and may lead both methods 1o a local mini-
mum. On the other hand, when we choose lhe initial soi-
ution given by equation (28), the algorithm starts much
closer to the ture solution. Figure 9 represents the true
errors of the Hénon signal alter upplying both methods
for Case 2 with the same data as for Figure 8. Both
methods give good resulls. From these cxperimenls, we
can sec that the performance of the interference signal
cancellation using noise reduchion methods greally depends
on lhe scleclion of the imtial solwlion, cspecially, for the
casc when the mean value of the interference signal is

much diflerent lrom that of information signal.

IX. Conclusion

This paper has described a generalized iterative schemes
lTor cnhancing conlaminated chaolic signals and considered
their convergence conditions and  error systems. The
augmenled syslem approaches are considered 1o separate
the mixed chaotic signals under the assumption that all
the sysiem dynamics are known. Also, the interference
stenal cancellation problem is trealed in (he spiril of noise
reduction and investigated for different initial solutions.
Numecrical experiments have been perfotmed to compare
the perlormance of the proposed noise seduction Methods
1 and 11 with that of ¥armer's mcthod for additive white

Guaussian noise. The proposed method cxhibits perform-

ance comparable to Farmer’'s method wilh the proper
choice of cost functions, bul has a much simpler struc-
ture. On the other hand, the proposed mclhod requires
more ilerations o achieve convergence. Overall, however,
the necessary computation is still less Lhan Farmer's
method because cach iteration is fairly simple. For the
signal scparation problem, the augmented EKF approach
shows good performance al high SNR;'s, while it is sensi-
live to noise. On the other hand, the augmented itcralive
noise reduction approach is not sensitive 1o naise, though
it docs not improve significantly for high SNR;’s. Also,
we suggested an initial solution candidate that is espectally
uscful for (he interference signal cancellation probiem.

Grassberger’s method and the proposed noise reduclion
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Mecthod Il arc tested for two diffcrent initial solulions,
The experiments indicate that the performance of Lhe
mterfercnce signal cancellation using reduction methods

greally depends on the seleclion of the initiad solution,
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