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Abstract

Generalized iterative methods for reducing noise in contaminated chaotic signals are proposed. These methods minimize 
a cost function composed of two parts: one containing information that represents how close enhanced signals are to the 
observed signal and another composed of constraints that fit the dynamics of the system. The convergence conditions and 
the error systems of the proposed methods are investigated. As one aspect of noise reduction, the suppression or cancel­
lation of a chaotic interference signal is discussed

I. Introduction

In many cases, the study of nonlinear dynamical sys­
tems and chaos has been motivated by the relationship 
between chaotic signals and random processes and has 
caused many researchers to reconsider what is meant by 
"noise". The deterministic signal from a nonlinear system 
may look like noise when displayed in either the time or 
frequency domain. Much of the engineering work in this 
area has involved a search for applications of these 
"noise-like” deterministic signals. For example, Cuomo 
and Oppenheim |6] have applied a chaotic system with 
the self-synchronization property to the secure communi­
cations problem. They have exploited the characteristics 
of the system to mask an information signal with the 
noise-like chaotic signal. However, for their implemen­
tation, if the level of additive noise due to the transmit­
ting channel exceeds 10% of the driving signal, synchron­
ization will not occur. Therefore, for their algorithm to 
succeed at low signal-to-noise ratios (SNRs), a noise re­
duction algorithm is necessary. Also, noise limits our 
ability to extract quantitative information from observed 
signals [8J. Obviously, noise reduction is essential lor both 
the analysis and application of dynamical systems.

Unfortunately, conventional linear filtering methods can­
not be applied successfully to signals produced by chaotic 
systems, because the signals have, generally, broad-band 
spectra. Moreover, a simple lowpass or bandpass filtering 
can change significantly the Lyapunov exponents and the 
fractal dimension of the reconstructed attractor [8]. To 
data, several methods [8], [9], [10], [11], [12] have been de­

veloped to remove noise from chaotic signals. These 
methods separate into two classes：those that assume the 
system dynamics are known and those that do not know 
the dynamics. Obviously, the latter case provides a ro­
bustness at the expense of performance. The choice of 
which method is suitable depends on the characteristics of 
application. For instance, in secure communication ap­
plications [6], [7] it is assumed that the dynamics of the 
system are known. In this paper we will consider the 
noise reduction methods which are applicable only when 
the system dynamics are known.

Farmer's method described by Farmer and Sidorowich 
[10] has nice performance in mild SNR circumstances. 
However, its structure is relatively complicated because it 
combines the manifold decomposition procedure and 
singular value decomposition for the inversion of a large 
rank deficient matrix. Therefore, we propose two classes 
of generalized iterative noise reduction schemes for con­
taminated chaotic signals which are simple and easily 
implemented. One class of these proposed methods esti­
mates the deviation of the observed signal from the near­
est noise-free signal and uses the result to get a noise- 
reduced signal. To calculate the deviation our techniq니。s 
minimize a cost function composed of two parts；one con­
taining information that represents how close the enhan­
ced signals are to the observed signal and another com­
posed of constraints that fit the dynamics of the system. 
Another class of these methods tries to enhance the ob­
served signal by iteratively seeking the signal minimizing 
a cost function. Members of these classes vary as a result 
different choices for the parts of the cost function. We 
will show via numerical simulations that some versions of 
these schemes have better performance than Fanner's 
method for relatively low SNRs.
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II. Farmer's Method 'Ao Co

Ao f
Suppose that we have an "dimension시 nonlinear dis­ A, Q)i

crete-time dynamical system1 described by a difference A, = -T,
equation :

q -2
+i =f(x„), n~0, 1, 2,… .A,v -■ 1 .

where x« G RM is the state vector point at time n and f: 
rm h-> rm describes the dynamics of the system. The sol­
ution x«, w = 0, 1, 2,…of the difference equation is 
called an orbit. When the point x„ is contaminated with 
additive noise x„ and wc observe the noisy point y„ = x„ 
+w„, our goal is to clean the noisy point y„ to estimate 
the noise-free point xw.

Farmer and Sidorowich [10] have used the Lagrange 
multiplier technique to minimize the cost function:

N- 1 N f
L lly«-xM||2 +2 v An/(x„)-x„ + l], 
n - 0 m = 0

where A„ indicates the Lagrange multipliers at time n、x„ 
is an enhanced point, and N is the number of observed 
data points. If we define several variables : & 드 一 5 皿

—xw+i, 1匕三x” i-i —f(xn) and assume A” = () for n<0 
or n>NT、we can arrive at two linearized iterative equat­
ions to be solved by taking the derivatives of the cost fun­
ction with respect to xtt and An and setting them lo zero. 
That is

<I>n= D/^yAn-Att-i

where D/(x„) is Jacobian of /(■) at x„.
The above two equations can be cast into matrix form 

as follows:

'-I D/(io)r "
D/(i0) 0 -I 0

-I -I D/W
W&) o -i

0 D/(x/v-2) 0 -I
-I -I . 

and solved by inverting the matrix to get &, the devi­
ation of the enhanced point from the true point. This ap­
proach works w이 1 for short trajectory segments, i.e., 
small N、but the matrix inversion can be computationally 
expensive. The so-called manifold decomposition method 
introduced by Hamm이 [9] is a fast and efficient technique 
that avoids this matrix inversion. It exploits the shadow­
ing property of chaotic systems that a deterministic orbit 
can be found that is arbitrarily close to an observed noisy 
orbit [9], |10]. The noise reduction problem for a chaotic 
system can be viewed as seeking an approximation to the 
true orbit by finding the optimal shadowing orbit. The 
manifold decomposition method will be explained briefly.

If the trial solution x would be complete (noise-free), then 
-i). Let 4爲= and n„ =/(yM-i)-yn. Assum­

ing is close to y«, we can get

皿 w D/Ih — JS—LH” (1)

For the two-dimensional case, if eM and c„ are unit vect­
ors in the expanding (unstable) and contracting (stable) 
directions, respectively, then FIW and can be decom­
posed into two directions.

(% = s e” + Pn cn

For higher-dimensional cases, IL and can be decom­
posed into stable and unstable subspaces. Since n„, n = 0, 

N — \ can be calculated from N observed points, 
and 臨，〃 = 0,…，N — l are easily obtained. Two iterative 
equations for an and Bn can be obtained by plugging the 
above two eq nations into (1) and considering for each di­
rection

+ 1 十 Gi + l c
nn = lDf(i^I ■

For convenience, only discrete-time dynamical systems arc considered in this paper, though continuous-time dynamical systems may 
be treated in much the same manner.
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Once we have an and 為，we can calculate the deviation 
term and then the estimated true point using Q)”. 
Although the manifold decomposition method is fast, it is 
less accurate in the presence of homoclinic tangency [10], 
which occurs when the stable and unstable directions are 
nearly parallel. For points where homoclinic tangency 
occurs, Farmer and Sidorowich applied their Lagrange 
multiplier approach. However, homoclinic tangency may 
cause the matrix to be nearly rank deficient. In this case, 
the matrix inversion is accomplished by using Singular 
Value Decomposition (SVD).

Consequently, the manifold decomposition method and 
SVD are often combined such that the manifold de­
composition method is used except for those points where 
homoclinic tangency occurs and SVD must be applied. 
However, combining the manifo서 decomposition pro­
cedure and SVD may be inconvenient when Farmer's 
method is applied to real systems, and SVD may require 
too much computation. Therefore, we suggest an iterative 
scheme for processing contaminated chaotic signals that 
has a simple stru어ure.

HI. Generalized Iterative Noise Reduction 
Methods

We will consider the noise removal process as a con­
strained optimization problem. Consequently, when we have 
a function C|(x, y) to be minimized with respect to xn un­
der constraints c2(x) = 0T a constrained cost function C can 
be defined using a weight function「(which could be a 
scalar or a matrix according to the form of c2(-)):

C = y) +TC2(x). (2)

The function <，(•，•)should measure the closeness between 
the enhanced points xM and the noisy points y«. The Euclid­
ean distance between x„ and yn is an example of an accept­
able C|(-,•). Alternatively, the correlation between xn and 
y„ is also a suitable choice for a %(•,•), but it must be 
maximized instead of minimized. There exist many other 
candidates for•们(•，•).

The constraint function c2(-) should be chosen to enforce 
the dynamics of the system. For example, if /(-) and 广' 
(•) inidicate the forward dynamics and the backward (in­
verse) dynamics, respectively,

Li - I I Lj )
e(£)= L E !I/*( xm)-x„+aII2 + ILf어(WJ—臨项|2

(3)
M = /, 1 [ A = 1 卜 I J 3 

is one possible choice of c2(-) for some positive integers Lt 
and where fk(-) and /애。) indicate the k-fold com­
position of the forward dynamics /(-) and the backward 
dynamics / ’(,)，respectively, and N is the number of 
available data points. If/"'(■) does not exist, the second 
term of (3) can be ignored.

Given and(”(•)，we can find a solution by ta­
king the derivatives of C with respect to x„ and 匚 and set­
ting them to zero.

•==患)=。 (5)

We want to find x„ satisfying both (4) and (5). In most 
cases, it is not easy to get a closed form solution bcca니se 
of the nonlinear terms in equations (4) and (5). However, 
we can estimate the deviation (noise) term or the s이uticn 
iteratively.

The motivation for the proposed scheme stems from 
the so-called ^iterative method" for solving the linear sys­
tem Ax = b |16|. When the amount of computation in 
solving Ax—b = 0 is excessive, wc may choose to settle for 
an approximation x, that can be obtained more quickly. 

In many cases, it is possible to develop an iterative me­
thod that, for any initial point, can produce an improved 
s이ution i(i} at the z-th iteration from the previous iter­
ation's solution, that converges to x as the number 
of iterations increases. One common approach is to split 
the matrix A. If AA)—A2, then the equation Ax—b^O 
becomes Ai x — A2x - b = 0. Therefore, wc have the iterat­
ive scheme for solution:

A|X<^ = A2xg~,) +b. ⑹

This method requires that Ai should be a simple matrix 
to invert, such as a diagonal or triangular matrix. Also, 
the iterative method (6) converges for any starting point 
if and only if the magnitude of every eigenvalue of A^1 A2 
is less than 1.

A. Method I
Next, we apply this iterative approach to solving the 

nonlinear system of equations given in (4) and (5). When 
choosing suitable functions %(£, y) and c2(x) and constant 
r, we can arrange (4) in the following form

x„-y„ +/z(x, y) = 0 (7) 
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for some nonlinear function /?(•,•). Since y« = xM +w„, 
under the assumption x« % x„, equation (7) gives

w„ a h(x, y). (8)

Although h(x, y) may contain terms as nonlinear com­
ponents, we can assume that w„ in equation (8) is an esti­
mate of w„ should satisfy equation (8) as long as x„ is son 
close to xn. Therefore, in the spirit of equation (6) for lin­
ear systems, we may estimate the noise (deviation) compon­
ent using equation (8), and an enhanced point can be com­
puted ilerativ이y by setting x^l! — w« until the sol­
ution converges. Clea디y, G项 may not be a good estimate 

for the first several iterations, especially, when the SNR is 

very low. In those situations the terms in 
心£)

& associated

with the dynamical inconsistency of the noisy points may 
produce an unacceptably large correation term w„ causing 
the solution x„ to diverge. This behavior may be overcome 
by weighting the correction term with a constant Kt ac­
cording to a threshold 6.

w„ =
K\ wn with K\ - 1
Ki w„ with 0<K】《l

if !lw„|| M 
if llwM||>(5 (9)

If zero-mean white Gaussian noise and an A/-dimensional 
dynamical system are assumed, the II w«||2 possesses a X3 di­
stribution with M degrees of freedom. Hence the probability 
density of || wM|p can be calculated if we know the vari­
ance of the noise. Thus, using the distribution of II w„IF, a 
suitable 6 may be found.

Let's consider the equation x — y + 方1 +3* +W1 This equation can be arranged in several forms:for example, x = ~ (y—xy

(y—x3 The former form would have better convergence characteristics than the latter form.

So, to estimate the enhanced data, we update each 
point in a manner analogous to equation (6)

萼K技;"째" +(1 —&)暮T

=还5-KA 初 (10)

史5 =就5一&试

讨*応厂，y) (H)

for a weighting constant 0 < < 1. In these equations x?
and are the enhanced points at the present z-th iter­
ation and at the previous (z — 1 )-th iteration, respectively, 
as before. x(^'temp} is an intermediate enhanced point at the 
present ?-th iteration using "(•,•). Since K? is related to 

both the convergence speed and stability, it is efficient to 
set Kq to a relatively small value for the first sever시 iter- 
ations to guarantee stable convergence and then to use a 
relatively large value for later iterations to achieve faster 
convergence.

The iterative update scheme can be established as fol­
lows (Proposed Method I):

1. Initi시ly set =
2. Estimate the deviation term w„ using (11).
3. Weight the estimated deviation wM to avoid unaccept­

ably large corrections usin응 (9).
4. Computer a new point using (10).
5. Iterate steps 2-4 until convergence.

B. Method II
In Method I, we need to find suitable values for two 

weighting constants K\ and K> This disadvantage can be 
deviated by estimating the enhanced signal itself in­
stead of the deviation term. We can arrange equation (4) 
with respect to in including the "linear" terms to get the 
following for some nonlinear function g(・，・)

总=亦,y). (12)

Since equation (12) must be satisfied whenever the enhan­
ced point x„ converges to the true point x„, we can estimate 
the enhanced point of the present iteration, by using

—d, y). This result is based on the same concept as 
that behind equation (6). We can update a point using

科 = K 蓦"허”"。一冏 汙“

= 菲디' +&［科'还니“ (13)

蓦前)=亦(1),时 (14)

for a wei아iting constant 0<K3《l. If we rearranged (4) 

with respect to the x„ to include both "linear and non­
linear" terms, this method wo니d tend to be unstable, since 
the nonlinear terms, in general, are very sensitive to noise 
and may make this iteration diverge2. Although the re­
quirement in our original motivation suggested that the 
matrix At should be simple m이ivates the use of "linear” 
terms only in order to get equation (12), our investigat­
ions via numerical simulations show that this condition in 
most cases also results in stable convergence of this

—x3 — y3) or x =-----—y +4
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method.
The iterative update scheme can be established as fol­

lows (Proposed Method II):
1. Initially set f 軟드
2. Estimate an enhanced signal in using (14).
3. Computer a new point using (13).
4. Iterate steps 2-3 until convergence.

IV. Examples

To get some insights, we will derive the key equations of 
the proposed methods I and II for a given cost function.

A. Example 1
In this example, we consider C|(x, y) to be the Euclidean 

distance between the enhanced points xn and the noisy po­
ints y心 C2(-) to be given by (3), and the weight function 
r= 1. That is,

N-k
, y)=、llx«-y„ll2 

n = 0

3 Obviously, in this example, we cannot get the enhanced points for n<L2 and n>N~Li —1.
4 The dynamics of the two-dimensional Henon map are given in equation (25).

N— Li — I / Z-i Li )
9任)= E E ll/A(x„)-x„+<fell2 +E 11/애(九)-£”-洲 .

n = Lt I A = I k= I J

For systems in which the inverse dynamics do not exist, 
the last term of Cz(x) may be ignored. However, in other 
cases it improves the performance of the method

If we take a derivative of C with respect to xn and set 
it to zero, then we get the following result, corresponding 
to equation (7).3

[ fk(in)-x„ +k ]
k -1

Lz
+ E d丿L(£”) [ /여(h)-h시

k=\

- ii [产底기히 

k=I

Li
- E [广어成&-£』=(), (15)

k=I

where Dfk{-) and D/-A(*)  are the products of the Ja- 
cobians of /(•) and /_|(-), respectively, defined by

D/A(x«) = fl D/(xn +()
1=0

D/~^(x„)= ri

Since yM-x„ +ww, if the trial solution xn is close to i. 
e., xM ~ x„, then we have an equation for the deviation est­
imate corresponding to equation (11).

w„ E D/*(x„)  [/^(x„)-xn +k] 
k= I

+ E D/- *(x„)  [ f~k(x^-in-k I 
1

-E - L [f~kdn +J-X„1
k=1

This deviation estimate does make sense when we con­
sider the case when the enhanced point x„ is converging to 
the true solution x„. If x„ ~ x„, 나诚 right hand side (RHS) 
of the above equation is nearly zero, resulting in only a 
small correction being made in the update equation (10). 
On the other hand, we can get an equation corresponding 
to equation (14) by re-arranging equation (15).

= ——7——— I E l/*(x w)-x„+il
1 ~rLi十丄2 ( 卜！

+ E /아
k= I )

Similary, this signal estimator appears to work when we 
consider the RHS of the above equation under the as­
sumption xq x”. In that case we can see from the up­
date equation (13) that the correction term is approxi-

K3
mately ' w„ resting in only a small correction.

1 ~T L] + L2

Therefore, we can guess that a smaller Ky will give better 
performance. In Section V we will see, however, that a 
smaller value for K? slows the convergence.

Since noise (perturbation) components in an enhanced 
orbit x may cause the fk{-) and/or terms to di­
verge with evolution, L\ and L? should be small for low 
SNR cases, while larger L\ and L? may be acceptable for 
high SNR cases. The determination of L\ and L》is as­
sociated with the Lyapunov exponents of the system. To 
explain this, consider the two-dimensional Henon map4 
with Lyapunov exponents 人1= 0.42 and 人2= 一 1.62. The 
rate of change of a state perturbation along the unstable 
direction is approximately proportional to for for­
ward evolution and e~Kin for backward evolution. This 
relationship implies that the rate of change of a state per­
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turbation for backward evolution is larger than for for­
ward evolution. In order to get the same rate of change 
along both the stable and unstable directions, we must 
choose L\ and L2 such that

“서 r q ~ Li A-i

This condition implies that Ln should be smaller than L\ 
for the Henon map when L\ is chosen to guarantee stable 
convergence [17]. Obviously, choosing L\ = 1 and L2 = 1 is 
the safest way for stable convergence for low SNRs.

B. Example 2
In this example, wc choose Ci(x, y) associated with the 

correlation coefficient between the enhanced point x„ and 
the noisy point y„ and c2(x) as the simplest case of equ­
ation (3) with L\ = 1, and the weight function「=1. The 
backward dynamics are not considered in this case, i.c., 

L2 = 0. Thus

z- \ ]乙！ X” '서n

C2(£)=£ +1 II2.
n

When we compare this cost function with the cost func­
tion in Example 1, we observe that this co이 function, in 
effect, weights r2(-) by N,

Under the assumption that xn 스; xM, we obtain an equ­
ation corresponding to equation (11)：

w„ 2 y/n^niy D/(x„)[/(xw)-x„

- 2 \fnkcmy [/(x«-i)-xM| 으쏘" - 1 \ xn, (16)
\以 丿

where 弁=2, l|x„||2, my = Y.n lly«ll2, and 刀幻
Similarly, we can get an equation corresponding to c아u- 
ation (14).

the update equation (13) under the assumption x„ ~ x„,
K3

only a small correction, approximately--------- 〒=• w„,
1 +2、!7农屿 

is made.

V. Convergence Conditions

As with most discussions of convergence conditions, we 
will demonstrate requirements for local convergence with 
no guarantees of global convergence. However, from the 
results of the numerical experiments given in later section, 
wc observe that even the local convergence achieved by 
these methods is Klatively close to the true solution. 
Therefore, wc will investigate the conditions on these 
methods that will guarantee local, but not necessarily glo­
bal, convergence.

In is not easy to derive general formulas for g 
(•,•), K\, Ki, and Kj that guarantee convergence. How­
ever, by choosing K\, K2, and K? such that the deviation 
from the true solution at the i-th iteration is smaller than 
at the (z 一 1 )-th one, we can have some confidence in con­
vergence to the true solution. Thus, in order to get an up­
per hound on K\, K*  and Ky for convergence, the follow­
ing inequality should be solved with respect to these con­
stants.

n^y 十 2g VWTrWy

[/(X«)-Xrt + |] +2 寸遍的 (17)

When we investigate equation (16), assuming that the en­
hanced point is converging to the true solution, the RHS of 
equation (16) is close to zero because is, ideally, equ­
ivalent to nix for large N. Thus, only a small correction, 
K\K2 w„, is performed in the update equation (10), giving 
validity to using equation (16) as a deviation estimator. 
Similarly, if the RHS of equation (17) is substituted into

e{您还F-x*||2}  <0

Solution of this in아ualily using the knowledge of the sys­
tem dynamics and the formula for expected values of 
higher moments is only straightforward for / = 1, but this 
ciisc is not sufficient to guarantee convergence.

Another criterion for the convergence of the proposed 
algorithms can be found by examining the conditions un­
der which the correction term goes to zero with iterations. 
To determine these conditions we will consider a theorem 
associated to the stability of a system [13].

THEOREM /：Given a dynamical system x„ = /(x„-j) 
where /(0) = 0 for all n, suppose there exists a scalar fun­
ction Jz(x„) such that Z(0) = 0 for all n, and

1. V(xn) is positive definite for all n and all x«^0；

2. = f (丿f(x”))一卩()頌)<0 for all n and all x„ #0, 
then the equilibrium state (origin) is equiasymptotically 
stable and ^(\„) is a Lyapunov function of the system.

In order to see whether the correction term goes to 
zero with iterations, we need to see whether the origin of 
the correction system is stable. To investigate it, we con­
sider the energy function as a Lyapunov function candi­
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date5 6 7 for the correction system

5 This energy f나nclion is considered frequently for many physical systems. However, this Lyapunov function candidate is not suitable 
for determining the stability of every physical system. Nonetheless, if we can show the existence of a Lyapunov function for the given 
correction system, the exact convergence conditions can be described by detennining the ranges of the weighting constants and proper 
&(•,•) and g( •,「)that satisfy AK < 0.

6 We assume that K2 y) is small enough that higher order terms in the Taylor series expansion can be neglected. If this is not
true, the result may be unreliable. To simplify our nolation, we will not show the y term in y).

7 We will call C卩 a '“convergence matrix".

Y&NIIx/MIe (18)

First, let's consider the correction system associated with 
proposed Method I. From the update equation (10), if 
the correction term as then x"二 x厂')，im­
plying that xF converges. Therefore, if we can find a con­
dition on K\Ki guaranteeing w = A(x y)-^0 as i 
oo, it would serve as a guideline for choosing K\ A2. Using 
equations (10) and (11) and the Taylor series approxi­
mation for y)。，we can get the following correction 
system for the method corresponding to equation (11).

就5 =弘3)

이I — Ki&DZz(敛T)]

=fl [l —KAD/zGNTT)] Mx(0))

=n [i-k&d応 it"祁

R = 0

祁， (19)
卜0

where 幻)is the Jacobian of /?(•,,) at x(A). To inves­
tigate the stability of the origin of the correction system 
given by equation (19), let's apply the stability theorem to 
the Lyapunov function candidate in equation (18). Then, 
we obtain the following result.

사/(応⑴)) = n [ I -KxK2Dh(x(1))] h(i(0))-r(h(x(0))

=II 卩一K&Dk(i⑴)]h(i⑴)||2-||応 I,)ll2

= k(x(i))T 3이T

} /z(x(1))

二依⑴)「{C/C?)T} (20) 

From the theorem, if 사/( 方(x ⑴))<0, the origin of the cor­

rection system is stable and this algorithm is convergent. 
Therefore, we see that this algorithm will converge if C件 

Cj°—I is negative definite for all 订 Since the conver­
gence matrix contains KK, we can get convergence 
conditions by choosing K*  such that C 卩— I is 
negative definite. However, we cannot get a closed fonn 
expression for the convergence conditions on K\ Kz to 
make Cl',r Cj*'-!  negative definite, since D A(-, •) is gener­
ally asymmetric and all possible x(0 must be considered.

Therefore, by investigating the largest singular value of 
in equation (19) as，一*  we suggest a Mnu- 

merical criterion" for determining both an approximate 
range on the weighting constants K\, K」and K? and whe­
ther the selected nonlinear functions /?(•,•) and g(・，・) are 
suitable for noise reduction purposes. If the largest singu­
lar value「I approaches zero as we see
that w0 from equation (19) and the algorithm is con­
vergent. Therefore, this route Ciin be used to acquire the 
information needed for the convergence of the algorithm. 
Unfortunately, the product of the convergence matrices is 
difficult to calculate because the system evolves along the 
iteration index i instead of along the time index n and we 
do not know x for all i a priori. However, we propose 
to calculate the range of K\IG for which the largest sign- 

ular value of the product of the convergence matrices ap­
proaches zero along the noisy orbit yM. We expect this 
range to give suitable information for convergence, be­
cause C卩 can be regarded as a sequence of random matr­
ices whose elements have finite mean and variance, and 
the growth rate of the system given in equation (19) is 
bounded by the largest singular value of some matrices of 
the sequence [15|.

Fig니re 1 shows an experimental result for the largest 
singular value of the product of convergence matrices in 
equation (19) for the two-dimensional Henon map after ap­
plying the algorithm for 200 iterations for various K\K, 
The SNR was 10 dB. From this experiment, we can see that 
the suitable range for convergence is approximately be­
tween 0.0003 and 0.0014. The lower bound of K|/【2 = 0.0003 
comes from the following fact: if K2 = 0,、衫? = from
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equation (19) implying no convergence. Figure 2 repre­
sents the change of the largest singular value with iter­
ation for various K\K> The same situation is assumed as 
for Figure 1. We can see that the largest singular value 
approaches zero when K}K2 lies in the appropriate range 
for convergence.

Largest singular value of convergence matrix of h( ), SNR=1 o dB

윽
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g
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s
p
'
s

0.5 1.5
K1K2
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Figure 1. The largest singular value of for the two-
dimensional Henon map with various K} after 200 
iterations. The SNR is 10 dB.

ponents, the origin of the correction system is asymptoti­
cally stable and the algorithm is convergent. By regarding 
w(1) in equation (19) as an initial perturbation, we see that 
the value of w (,) as z—cq is independent of the initial per­
turbation, if the convergence system has all negative 
Lyapunov exponents. Therefore, we can get an approxi­
mate range on suitable values of K\K? by finding those K\ 
Kq for which all the Lyapunov exponents of the conver­
gence system are negative. If there exist no vahies of K\Ka 
for which all the Lyapunov exponents of the convergence 
system are negative, we must consider another form of h 
(•,•). As before, we propose to calc니ate the range of K 
Kz for which all the Lyapunov exponents of the conver­
gence system are negative along the noisy orbit y„.

Fig다re 3 shows an experimental result for the estimated 
Lyapunov exponents of the convergence system for the 
two-dimensional Henon map for various choices of K\Kz 
and SNR. We applied the method described in [5] to esti­
mate the Lyapunov exponents. One Lyapunov exponent 
appears to be negative for all K\Kz and SNRs. However, 
the other Lyapunov exponent is not always negative. Ob­
viously, 나)c results for a SNR of 10 dB is very similar to 
the remits in Figure 1.

An example for appropriate range of K1K2 

K1K2=0.00000001
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Figure 2. Change in the largest sing니ar value for the two-dimen­
sional Henon map with iteration for various K\ K2 The 
SNR is 10 dB. For the case K\ 0.0035, the system 
diverged.
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On the other hand, since the growth rate of the system 
given in equation (19) is closely related to the Lyapunov 
exponents of the sy아em® x ⑴ 一K】 K/zG日)), we claim that 
if the convergence system has all negative Lyapunov cx-

0 0.5 1 1.5 2 2.5

K*  x10'3

Figure 3. The estimated Lyapunov exponents of the convergence 
system of equation (16) for the two-dimensional Henon 
map for various K\ and SNRs. One Lyapunov 
exponent is plotted with a solid a solid line and other 
with a dashed line. The method described in [이 was 
applied to estimate the Lyapunov exponents. The SNRs 
are 17, 10, 7, 5, 4, and 3 dB and N - 200.

Next, let's consider the system corresponding lo pro­
posed Method II. To get an approximate range for Ky in

——I

We will call this type of system a “convergence system".
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the same manner as before, we find the convergence sys­
tem of and observe all the Lyapunov exponents of 
the convergence system. From equation (13), if a correc­
tion system given by 社?三-o-d^q as 一气 the 

algorithm will converge. We consider the following equ­
ations obtained using equation (13) and the Taylor series 
expansion.

；(»)= _-(/-!) e” J*  x算

顼祝2) E 沙니) ) 顷니)

~ 一시) +K3 e d

= [(1-K3)I +K3Dg(£G-2))]普-”

=11 +&Dg(""叩

=fl C 尸祁 (21)
4 2

If the origin of the correction system e ? is stable, then e F 

as implying convergence of this method. Simil- 
ary, recalling the stability theorem and the Lyapunov 
function candidate in equation (18), we can derive a con­
vergence condition for this algorithm.

Ar(e®) = r([(l -K3) I +K3 DgG/T)) ] e®) - r(e®)

= 11((1 TG)I +&Dg*- 叫哗『-I官? II2

=衫?「{[(1 一给)1 +K3Dg(£"-D)r

[(1 -*3 )I +&%史-刘_1 }邳

= e^{cri,7'Cri)-l} e® (22)

As before, if AK(e®)<0, then this method is convergent. 

Therefore, we have the convergence condition that requ­
ires 가le matrix 一I to be negative definite for all i.
As before, we cannot get exact closed form conditions of 
K3 and g(\ •) such that this condition is met for all x(0.

Therefore, we consider the convergence system of this 
algorithm to get an approximate range on K)and g(；). 
In this case, the convergence system is (1 —旳)理"Eg 
(x(Z)). If the convergence system has all negative Lyapunov 
exponents, should converge to the origin as Z—>co. As 
before, we can get an approximate range for Ky by ident­
ifying those values of Ky that allow all the Lyapunov ex­
ponents of the convergence system to be negative. If there 
exists no upper limit on K3 for which all the Lyapunov 

exponents of the convergence system are negative, we 
must try another form of Figure 4 shows an ex­
perimental result for the Lyapunov exponents of the con­
vergence system of equation (17) for the two-dimensional 
Henon map according to various K，and SNR. These 
Lyapunov exponents were also estimated by applying the 
method in [4].
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Figure 4. The estimated Lyapunov exponents of the convergence 
system of equation (17) for the two-dimensional Henon 
map for various K? and SNRs. One Lyapunov exponent 
is plotted with a solid line and other with a dashed line. 
The method described in [5] was applied to estimate the 
Lyapunov exponents. The SNRs are 17, 10, 7, 5, 4, and 3 
dB and N = 200.

VI. Error Systems

In this section we will observe the steady state behavior 
of the error system of the proposed methods under the 
assumption that the correction system has a stable origin. 
To see what happens to the proposed methods with iter­
ations, we will define an error system as the difference be­
tween the true point and the enhanced point at the 
iteration, i.e., e(^ — ■

First, consider proposed Method I. Using the update 
equation (10), equation (19), and the Taylor series expan­
sion, we can derive the following equations.

e? 그 Xn —

=球+/忡2 E /z(逆*少
* = 0

I — I

= -w„ E /z(시-")
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--w”+KA E

i —k —2
FI [ I—KKD応d-2))) 応(이)

丿=o
i-i

--w” +k,k2 E
Jt = o

—k —2 I
11 I I-KKD応 d/z(x) I w” (23)

where we use the facts that x = y„ - xtt +w„ and, for the 
true orbit x, h(x) 0 as explained before. We observe 
that the second term of the RHS of equation (23) is the 
sum of linear combinations of wM, and, if the origin of the 
correction system is stable,。이y a limited number of 
terms are present in the sum. However, it is not easy to 
show analytically that the sum converges to w«.

Second, consider the proposed Method II and its error 
system e? defined as before. In this case we see the steady 
state behavior of the error system more clearly. From 
equation (13), we have the fallowing result ；

separation or cancellation can also be regarded as a noise 
filtering problem. Chaotic signal separation and cancel­
lation is necessary when we consider the smart jamming 
and m니lipalh situations affecting the secure communi­
cations techniques using chaotic systems [19]

A. Augmented Dynamical Systems
When we observe a (vector) sequence v„ that is the mixed 

version of the sequences x； , xj , •••, x； from L chaotic 
systems and all system dynamics /t, /2, fL are
known, the noise removal problem is to recover x： , x；, 
…，x： from " = + …+w„, where
w„ is white Gaussian noise. From these assumptions, we 
can see that the signal separation problem is the same as 
the state estimation problem of the following “augmented" 
dynamical system.

+ i = FUn)
v„ = czM + w„, (25)

where 妇 and F(-) are augmented state vector and aug­

mented system dynamics, respectively, defined by

=X” 一 I & 还5> +(1 - &) X尸]

= (1-K 謨厂"+K 思?，

where 衫? = x”一x'；•'째". Iterating the above equation with 
respect to e® and recalling that e? = x”-x? = x”-由，we get

e® = (l -O e® +E K3(l 一"社f

=-(1 一&)；阳+芸 (24)

From equation (24), we see that 社？ 0 as i —”x)if we 
choose Ky as small as possible because the initial error 
terms cannot affect the whole error system as z—。。due 

to the scale factor (1 一 K》、On the other hand, it may be 
more efficient to select Ky to be close to 1 for fast conver­
gence due to the term (1 — K3)1. However, as shown in 
Figure 4, K3 should be small enough to guarantee all 
negative Lyapunov exponents for the convergence system. 
Therefore, we can see that there exists a trade-off between 
fast convergence and stable convergence.

W. Separation of Chaotic Information Signals

In this seciton, we will consider a separation technique 
for mixed chaotic signals that can also be used as a can­
cellation technique for chaotic interference signals. Signal

F（z”）=
心

九 （나,）

and c a row vector defined by c = [<7| q] for constant 
values i—\, 2, •••, L. To estimate z„, we will consider 
two approaches：the augmented extended Kalman filter 
approach and the augmented iterative noise reduction 
approach.

B. Augmented-Extended Kalman Filter Approach
The Kalman filter has been designed to estimate the 

state vector in a linear dynamical model. If the model is 
nonlinear, a linearization procedure is usually performed 
resulting in 나顶 so-called extended Kalman filter(EKF) [14].

When an augmented dynamical system (25) is constructed 
from the observed sequence v„ and knowledge of the sys­
tem dynamics //, i—\, 2,…,L the nonlinear model (25) 
is approximated by the linear model obtained using the 
linear Taylor approximation of F(z„) at a predicted state 
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vector zn:

F(z”) 추 r(z„) 4- DF(z„) (z„-z„),

where DF(z„) is the Jacobian matrix of F(・) at z„. When 
form미ate z„ 드 z„in using the predicted state vectors

z“ + i|” = F(z카),

we can get a (approximated) linear dynamical model

z„+i =DA(z„)zM-F u„
v*  = cz“ + w거, (26)

where un = F(zft) — DF(z M)z This linearization is usef니 

only if z0 has been determined and, in most cases, z0 = £ 
{z。}. From the Kalman filtering results for a linear model, 
we get the correction formula

드 舛一1 + G“ (vw — cz 시%-]),

where Gn is the Kalman gain matrix for the linear model 
(26) at the w-th instant. The res비ting filtering process is 
called the EKF for an augmented system (25).

The filtering algorithm may be summarized as「이lows: 
Initial conditions：

•Po,o = Var{^}

•Zo = £{zo}
For w- 1, 2, 3,

• pk,„-i = df(z„_])p„^ii„_1 df(釘

니)

•R“ = J3{w키}

•G„ = PM,M_lcr (cP„,„_1cr4-R„)~l
* Pn,M = (I-GnC)P„5M_!
, z” 一 in\n—\ Gn(v„ — czn|K_|)

By appling the above algorithm, we can estimate the 
augmented state vector z„ to get x；, x：,…，.

C. Augmented Iterative Noise Reduction Approach
We can treat the chaotic signal separation problem in 

the framework of the generalized iterative noise reduction 
method described in the previous sections, whenever the 
observed sequence is cast into the form of the augmented 
dynamical system given by equation (25). If the augmented 
system (25) is given, a natural and simple approach is to 
find the enhanced point z „ that minimizes the following 
cost function：

C = LHv„-cz„||2 + ^||zn + | -F(z„)||2. (27)
n n

From the condition 쯔- ~0, we can get an equation defm- 
OZn

ing the estimate zH. For example,

z“ = (g-czQcT + F(z거 —J + DF(z„) (z„ + ! -F(zn)).

If the above equation satisfies the convergence conditions 
mentioned in Section V, we can estimate the augmented 
z” by applying Method II proposed in Section III-B. This 
approach is simpler than the augmented EKF approach. 
However, this approach has a weak point in that it does 
not use the knowledge of the system dynamics i = 
1, 2, •••, L "interaclively" while it tries to find the signal 
that is close to a v„ that is corrupted by other signals. 
This is clear when we oberve that DF(-) is a block diag­
onal matrix. On the other hand, this approach can be 
considered within the framework of the generalized iterative 
noise reduction method and can be applied to general 
situations, as can the augmented EKF approach.

D. On Concellation of Chaotic Interference Signals
For the chaotic signal separation problem, it is not 

always possible to have all the information about the system 
dynamics Z, i = 1, 2, L. In may smart smart jamming 
scenarios, the system dynamics for the jamming signals 
are not available. Since want to remove the jamming 
signals witho니I any knowledge of their system dynamics, 
we will consider the cancellation instead of the separation 
of these chaotic interference signals.

When we observe v„ composed of an information signal 
x： generated by the given system with dynamics f\, the 
interference signals, and additive noise, and want to 
extract x： , the only viable approach is to treat the jam­
ming signals as noise and apply a noise reduction method 
using the system dynamics f). One issue in applying a 
noise reduction method that uses system dynamics is how 
to select an “initial solution**  that avoids local minima. 
Because an interference signal with a dominant mean 
value can move the initial solution v„ away from the true 
solution, an interference signal with a mean value far 
away from the mean value of the information signal x： 
may lead the solution to local minimum if we choose the 
observed signal vM itself as initial solution. Therefore, 
from our experience with the interference cancellation 
problem, we recommend setting the initi시 solution as 
follows：
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.N-\
V„一~s L V키+E{x：} (28)

N «=o

where } can be calculated by using the knowledge f 
In summary, we may remove the interference signals by 
applying a noise reduction method that uses the system 
dynamics with the initial solution given by equation (28).

V【H. Numerical Experiments

For the noise reduction problem, the performance of 
the proposed noise reduction Methods I and II is com­
pared with that of Farmer's method for white Giussian 
noise. The sensitivity of the proposed noise reduction 
methods to the homoclinic tangency problem is investi­
gated. For the problem of chaotic signal separation, the 
performance of the augmented EKF approach and the 
augmented iterative noise reduction approach is investi­
gated. Also, for the problem of chaotic interference can­
cellation, the effect of the selection of the initi지 solution 
is demonstrated. The performance is discussed from two 
viewpoints：that of the true error and that of the dynami­
cal error. The true error is defined as the difference be­
tween the noise free-point xH and the enhanced point x„ :

The dynamical error is defined as the inconsistency of the 

dynamics of the enhanced data x„-

e2>„ = x„-/(x„_|). (3°)

A. White Gaussian Noise Case
In this section noise reduction results are presented for 

the two-dimensional Henon map |1] which is governed by

%i, ” + 】=1 .4 ” + %2,”

n + \ —0.3%,, «■ (31)

Figure 5 shows the mean squared error (MSE) for each 
coordinate of the true error and the dynamical error 
according to various SNRs after Farmers method, the 
proposed Method I, and the proposed Method II are 
applied to anoisy two-dimensioa이 Henon map. In both 
cases we used the cost functions described in Section 

IV-fi. The proposed Method I was iterated for 200 times 
with K| =0.06667 and K2 = 0.003, while the proposed 
Method H was iterated for 200 time & = 0.08, Farmer's 
method was iterated for 20 times. The corrupting noise 
was additive white Gaussian noise. The proposed methods 
have shown better performance than Farmer's method 
with regards to both the true error and the dynamical 
error. Also, the proposed Method II is more convenient 
than the proposed Method I since it requires only one 
weighting constant K» Though the proposed scheme 
requires more iterations than Farmer's method, it still 
requires fewer computations than Farmer's method. 
Moreover, its structure is much simpler because il does 
not require the matrix inversion or SVD calculation 
required by Farmers method. From this result, we can 
that the proposed methods have better performance at 
relatively low SNRs9 than Farmer's method.

q In high SNR cases, for example over 20 dB, we observed that Farmer's method shows better performance in the true error of the first 
coordinate of the two-dimensional Henon map. However, our goal is a method with good performance at low SNRs to be applied to 

applications of chaotic systems.

-800 10 20 30 40

SNR

-80 
0 10 20 30 40

SNR

Figure 5. The mean squared errors for Farmer's method (dash-dot- 
ten), proposed Method I (dashed), and proposed Method 
II (solid) for the Henon map according to various NRs. 
The subfigures depict (a) the true error for the first coor­
dinate, (b) the true error for the second coordinate, (c) 
the dynamical error for the first coordinate, and (d) the 
dynamical error for the second coordinate.

Figure 6 compares the sensitivity of proposed noise 
reduction Method I to the homoclinic tangency problem 
with that of Farmer's method. Farmer's method and the 
proposed Method I were applied to the noisy two-dimensinal 
너&ncm signal with a SNR of 8 dB. The first subfigure 
depicts the logarithm of the estimated angle between the 
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stable and unstable directions at each point. Therefore, 
the instances with small values indicate where the stable 
direction and the unstable direction are nearly parallel, i.e., 
homoclinic tangency points. The second and third subfigures 
show the first and second, respectively, coordinates of the 
true error after applying Farmers method. In the forth 
and fifth subfigures the first and second, respectively, 
coordinates of the true error after applying the proposed 
Method I are shown. Clearly, we can see that the proposed 
method is less sensitive to the homoclinic tangency problem 
that Farmer's method.

以+ i=1T,4(T)2 +()3K_]

is corrupted by a signal from the one-dimensional Logistic 
map governed by

g + i = 3.7如1 一必)

and white Gaussina noise w„. We observe the signal
+ X： + wn and want to separate x\ and from vn. 

We indicate SNR, is the signal-to-noise ratio between signal 
町 and noise w„. The signal to interference signal ratio, 
SIR,；, is defined by

ANGLE： BETWEEN STABLE AND UNSTABLE DIRECTIONS

SIRI? = lOlogio

1 N-\
卞 £ 假一자俨N n = 0

]NT
77 £ II xi -지 ip

(32)

TRUE ERROR 1 FOR FARMER METHOD

20 40 60 80 100 120 140 160 180 200

Time

TRUE ERROR 1 FOR PROPOSED METHOD I

where * =一汇 ’二； 지 and N is the number of data 

samples.
Figure 7 shows the MSE of the ture error and the 

dynamical error for each signal according to the various 
SNR/s. For these simulations c그 [1 1] and SIR” was 11 
dB. For the results of the augmented EKF approach, the 
errors generated during transients are ignored in calculating
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Figure 6. The sensitivity of Farmer's method and the proposed 
Method I to the homoclinic tangency problem. The first 
subfigure depicts the logarithm of the estimated angle 
between the stable and unstable directions at each point. 
The second and third subfigures show the first and sec­
ond, respectively, coordinates of the true error after 
applying Farmer's method. The forth and fifth subfigures 
indicate the first and second, respectiv이y, coordinates of 
the true error after applying the proposed Method I.

B. Chaotic Interfe佗nee Signal Case
In this section, the results for chaotic interence signal 

separation are shown. We assume that a signal from the 
one-dimensional Henon map described by
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Figure 7. The mean squared errors of the original signal (dashed), 
the augmented EKF approach (dash-dotted), and the 
augmented iterative noise reduction approach (solid) 
according to various SNRs. subfigures depict (a) the true 
error for the Henon map, (b) the dynamical error for the 
Henon map, (c) the true error for the Logistic map, and 
(d) the dynamical error for the Logistic map. SIRi2 = 11 
dB. For the augmented EKF approach the errors 
generated during transient time are ignored.
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10 Grassberger's method is not described in this paper. Refer to [12] for algorithm.
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the MSE. for both types of errors, we can observe that 
the augmented EKF approach gives good results at relatively 
high SNR, while it is sensitive to even a small amount of 
noise. On the other hand, the augmented iterative noise 
reduction approach seems to be insensitive to the noise 
but does not improve significantly for high SNR/s. In 
conclusion, the applications of both approaches may be 
limited because the augmented EKF requires high SNRs 
(over 40 dB) and the iterative noise reduction approach 
shows poor overall performance.

C. Effects Due to the Initi히 S이uti아】

In this section, the effects of the selection of the initial 
solution for interference signal cancellation are demo­
nstrated. We assume that the information signal is the 
one-dimensional Henon signal and that wc know the 
dynamics of the information signal. The Logistic signal is 
used as an interference signal, and no knowledge of the 
dynamics of the interference signal is assumed. The additive 
noise is white Gaussian noise with a 10 dB SNR|. SNR]2 
was 11 dB. To remove the Logistic interference signal, wc 
applied Grassberger's method [12]'° and the proposed 
noise reduction Method II for two cases:case 1 assumes 
that the initial is the observed signal itself and case 2 uses 
the initial solution with equation (28). Each method was

GRASSBERGER, CASE 1 PROPOSED ll. CASE 1

으

그

5
e

5

Figure 8. The true errors after applying Grassberger s method and 
the proposed noise reduction Method II for Case 1. The 
interference signal is from the Logistic system and the 
SNR is 10 dB.

Time

The true errors after applying Grassberger's method and 
the proposed noise reduction Method II for Case 2. The 
interference signal is from the Logistic system and the 
SNR is 10 dB.

iterated for 250 times.
Figure 8 shows the true errors of the Henon signal 

after applying both methods for Case 1. Both methods 
failed to remove the interference Logistic signal. There 
are several reasons for this result. The mean value of the 
Logistic signal is i■이사ively high which affects the mean 
value of the observed signal. Therefore, if we choose the 
observed signal itself as an initial solution, it is from the 
true solution and may lead both methods to a local mini­
mum. On the other hand, when we choose the initial sol­
ution given by equation (28), the algorithm starts much 
closer to the lure solution. Figure 9 represents the true 
errors of the Henon signal after applying both methods 
for Case 2 with the same data as for Figure 8. Both 
methods give good results. From these experiments, we 
can sec that the performance of the interference signal 
cancellation using noise reduction methods greatly depends 
on the selection of the initial solution, especially, for the 
ease when the mean value of the interference signal is 
much different from that of information signal.

IX. Conclusion

This paper has described a generalized iterative schemes 
for enhancing contaminated chaotic signals and considered 
their convergence conditions and error systems. The 
augmented system approaches are considered to separate 
the mixed chaotic signals under the assumption that all 
the system dynamics are known. Also, the interference 
signal cancellation problem is treated in the spirit of noise 
reduction and investigated for different initial solutions. 
Numerical experiments have been performed to compare 
the performance of the proposed noise reduction Methods 
1 and II with that of Farmer's method for additive white 
Gaussian noise. The proposed method exhibits perform­

ance comparable to Farmer's method with the proper 
choice of cost functions, but has a much simpler struc­
ture. On the other hand, the proposed method requires 
more iterations to achieve convergence. Overall, however, 
the necessary computation is still less than Farmer's 
method because each iteration is fairly simple. For the 
signal separation problem, the augmented EKF approach 
shows good performance at high SNR/s, while it is sensi­
tive to noise. On the other hand, the augmented iterative 
noise reduction approach is not sensitive to noise, though 
it does not improve significantly for high SNR,'s. Also, 
we suggested an initial solution candidate that is especially 
useful for the interference signal cancellation problem. 
Grassberger's method and the proposed noise reduction
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Method II are tested for two different initial solutions. 
The experiments indicate that the performance of the 
interference signal cancellation using reduction methods 
greatly depends on the selection of the initial solution.
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