• Title/Summary/Keyword: Noise rating curve

Search Result 7, Processing Time 0.032 seconds

Comparison of Rating Methods for the Floor Impact Noise (바닥충격음 평가방법 중 단일수치평가량과 dB(A) 비교)

  • Park, Cheol-Yong;Jang, Dong-Woon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.612-615
    • /
    • 2006
  • In this study, we compared and analyzed the floor impact noise insulation performance produced by the rating methods. The rating methods are using reversed A-weighting curve, A-weighted sound pressure levels(dB(A)). The results of this study are(1)dB(A) by the specified frequency is 0.5dB(A) at light weight and 2.5dB(A) at heavy weight upper than all pass dB(A)(2)the rating using reversed A-weighting curve is 5dB lower than dB(A)(3)the number of rating using reversed A-weighting curve mainly depends on impact noise pressure level of 63Hz in heavy weight but dB(A) does not.

  • PDF

Comparison of Rating Methods for the Floor Impact Sound Insulation Performance (바닥충격음 차단성능 평가방법의 상호비교)

  • Kim, Kyoung-Woo;Choi, Hyun-Jung;Yang, Kwan-Seop;Lee, Seung-Eon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.291-294
    • /
    • 2005
  • In this study, we compared and analyzed the floor impact sound insulation performance produced by the rating methods. The rating methods are using reversed A-weighting curve, A-weighted sound pressure levels and arithmetic average. On-site floor impact sound pressure levels of living room and room are measured. The results of this study are 1)the rating using reversed A-weighting curve for heavy-weight impact sound's standard deviation is lower than that of light-weight impact sound, 2)the number of rating using A-weighted sound pressure levels and arithmetic average is larger than that of using reversed A-weighting curve, and 3)the number of rating using reversed A-weighting curve mainly depends on impact sound pressure level of 63Hz in heavy-weight impact sound.

  • PDF

Diagonstic Evaluation of X-Ray Imaging using Fuzzy Logic Systems (Fuzzy Logic Systems을 이용한 X-선 영상의 진단평가)

  • Lee, Yong-Gu
    • 전자공학회논문지 IE
    • /
    • v.46 no.3
    • /
    • pp.62-67
    • /
    • 2009
  • In this paper, ROC curves were designed by using Fuzzy Logic Systems. ROC curve is used for diagnostic evaluation and the person evaluating ROC curve is chosen as a first-level diagnostician. For rating diagnostic capability on ROC curve through learning, the chest X-ray image is used. The images used for making a diagnosis are X-ray film being both noise and signal. The result over diagnostic capability difference between the male and the female represented a man had better than a woman but that difference can be ignored.

Boarding Environment of Training Ship KAYA to the Noise during the Voyage (실습선 가야호의 항해 중 선내 소음에 대한 승선환경)

  • Kim, Min-Son;Shin, Hyeon-Ok;Kim, Min-Seok;Hwang, Bo-Kyu
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.22 no.2
    • /
    • pp.218-230
    • /
    • 2010
  • This study was conducted to determine the effect of the noise level on the boarding environment in a stern trawl ship, KAYA(GT: 1,737 tons, Pukyong National University). We measured the noise level at a working, an accommodation and a teaching area, and an engine space on January 9, 2010 while the KAYA was sailing on a liner sea route. At the working area, the ranges of the noise rating number(NRN) and the NRN determination frequency(FNRN) were from 44 to 73 and from 1000 to 2000Hz, respectively. The results were generally satisfied the criteria of the International Maritime Organization(IMO). The noise level at the area, except the radio room(w2), was exceeded the criteria(50dB(A)) for the efficient studying and working. The noise level at the engine control room and the machine workshop was respectively exceeded 1.2dB and 9.5dB than the criteria caused the conversation disturbance (70dB(A)). At the accommodation, NRN and FNRN were from 49 to 54 and from 1000 to 4000Hz, respectively. The noise level was below the criteria of IMO, but above 40dB(A) caused the sleep disturbance. At the teaching area, NRN and FNRN were from 44 to 63 and from 500 to 2000Hz, respectively. The noise level was exceeded than the criteria(50dB(A)) for the efficient studying. At the engine space, NRN and FNRN were from 95 to 100 and from 2000 to 4000Hz, respectively. The noise level was above the criteria of IMO(90dB(A)) for the residence, while it was not exceeded 110dB(A) for the transient.

The Noise Level Assessment of Dental Equipment (치과 의료장비의 소음 수준 평가)

  • Lee, Jeong-Suk;Han, Ye-Seul;Cho, Young-Sik
    • Journal of dental hygiene science
    • /
    • v.15 no.5
    • /
    • pp.603-611
    • /
    • 2015
  • This research is aimed at cutting off hearing loss and other harmful factors due to noise and providing basic material for noise reduction plan. As the research method, this research assessed noise by measuring acoustic pressure level and frequency in various situation of non-treatment and treatment. As the measurement result, average noise degree of high speed handpiece of non-treatment, ultrasonic waves scaler, and low speed handpiece showed 58~66 dB(A). Average noise degree of scaling of treatment, tooth elimination, and denture adjust showed 73~81 dB(A). The result is inferior to recognized standards of noise induced hearing loss. But the result of assessing this with (noise rating) NR curve was NR-73~78, which exceeded general workplace noise standard. This level can cause hearing loss when exposed to a long time. Therefore, treatment office noise during dental treatment can cause psychological and physical damage in dental clinic employees, and it is urgently required to establish systematic and active noise reduction plan.

Application of linear-array microtremor surveys for rock mass classification in urban tunnel design (도심지 터널 암반분류를 위한 선형배열 상시진동 탄성파 탐사 적용)

  • Cha, Young-Ho;Kang, Jong-Suk;Jo, Churl-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.108-113
    • /
    • 2006
  • Urban conditions, such as existing underground facilities and ambient noise due to cultural activity, restrict the general application of conventional geophysical techniques. At a tunnelling site in an urban area along an existing railroad, we used the refraction microtremor (REMI) technique (Louie, 2001) as an alternative way to get geotechnical information. The REMI method uses ambient noise recorded by standard refraction equipment and a linear geophone array to derive a shear-wave velocity profile. In the inversion procedure, the Rayleigh wave dispersion curve is picked from a wavefield transformation, and iteratively modelled to get the S-wave velocity structure. The REMI survey was carried out along the line of the planned railway tunnel. At this site vibrations from trains and cars provided strong seismic sources that allowed REMI to be very effective. The objective of the survey was to evaluate the rock mass rating (RMR), using shear-wave velocity information from REMI. First, the relation between uniaxial compressive strength, which is a component of the RMR, and shear-wave velocity from laboratory tests was studied to learn whether shear-wave velocity and RMR are closely related. Then Suspension PS (SPS) logging was performed in selected boreholes along the profile, in order to draw out the quantitative relation between the shear-wave velocity from SPS logging and the RMR determined from inspection of core from the same boreholes. In these tests, shear-wave velocity showed fairly good correlation with RMR. A good relation between shear-wave velocity from REMI and RMR could be obtained, so it is possible to estimate the RMR of the entire profile for use in design of the underground tunnel.

Application of linear array microtremor survey for rock mass classification in urban tunnel design (도심지 터널 암반분류를 위한 선형배열 상시진동 탄성파탐사 적용)

  • Cha Young Ho;Kang Jong Suk;Jo Churl Hyun;Lee Kun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.157-164
    • /
    • 2005
  • Urban conditions such as underground facilities and ambient noises due to cultural activity restrict the application of conventional geophysical techniques in general. We used the refraction microtremor (REMI) technique as an alternative way to get the geotechnical information, in particular shear-wave (S-wave) velocity information, at a site along an existing rail road. The REMI method uses ambient noises recorded using standard refraction equipment to derived shear-wave velocity information at a site. It does a wavefield transformation on the recorded wavefield to produce Rayleigh wave dispersion curve, which are then picked and modeled to get the shear-wave velocity structure. At this site the vibrations from the running trains provided strong noise sources that allowed REMI to be very effective. REMI was performed along the planned new underground rail tunnel. In addition, Suspension PS logging (SPS) were carried out at selected boreholes along the profile in order to draw out the quantitative relation between the shear wave velocity from the PS logging and the rock mass rating (RMR) determined from the inspection of the cores recovered from the same boreholes, These correlations were then used to relate the shear-wave velocity derived from REMI to RMR along the entire profile. The correlation between shear wave velocity and RMR was very good and so it was possible to estimate the RMR of the total zone of interest for the design of underground tunnel,

  • PDF