• Title/Summary/Keyword: Noise loading analysis

Search Result 151, Processing Time 0.024 seconds

Evaluation on Expectation of Deflection of Floor Damping Materials Subjected to Long-Term Load (장기하중을 받는 바닥완충재의 처짐 예측 평가)

  • Kim, Jung-Min;Hong, Yoon-Ki;Kim, Jin-Koo;Lee, Jung-Yoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.19-26
    • /
    • 2016
  • Floor damping materials used in floating floor system to diminish the floor noise have been made with low density and dynamic stiffness. Owing to this low density and dynamic stiffness, the deflection in these materials under long-term loading and cracking of the floor finishing mortar in the floating floor system may occur. This paper presents the results of long-term loading effects on the deflection of different types of floor damping materials. The experimental program involved the long-term loading tests for 490 days loading period on sixteen specimens. Specimens were classified as DM1(Damping Materials) to DM8, depending upon the four main parameters; types, bottom shapes and densities of floor damping materials and amount of loading. Results indicated that the long-term deflection of all specimens of damping materials remained unchanged after 200 days at all loading amounts, except the specimens made up of Polystrene, in which long-term deflection remained unchanged after 160 days at 250 N load and 100 days 500 N load. In this paper, two types of correlation expressions were shown in the deflection range prior to the range where deflection remained constant; two analyses by ISO 20392 and linear regression. In comparison of two analyses and experimental results on the difference of deflection of 16 specimens, the difference of deflection was below 0.4 mm in those analyses in case of that total deflection was below 10 mm. Restrictively, it was judged that the analysis for the deflection of specimens made up of Polystrene is more appropriate using ISO 20392.

Construction and Functional Tests of Fuel Assembly Mechanical Characterization Test Facility (핵연료집합체 기계적특성 시험시설 구축과 기능시험)

  • Lee, Kang-Hee;Kang, Heung-Seok;Yoon, Kyung-Ho;Yang, Jae-Ho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.11-16
    • /
    • 2016
  • Fuel assembly's mechanical characterization test facility (FAMeCT) in KAERI was constructed with upgraded functional features such as increased loading capacity, underwater vibration testing and severe earthquake simulation for extended fuel design guideline. This facility is designed and developed to provide out-pile fuel data for accident analysis model and fuel licensing. Functional tests of FAMeCT were performed to confirm functionality, structural integrity, and validity of newly-built fuel assembly mechanical test facility. Test program includes signal check of data acquisition system, load delivering capacity using real-sized fuel assemblies and a standard loading cylindrical rigid specimen. Fuel assembly's lateral bending test was carried out up to 30 mm of pull-out displacement. Limit case axial compression loading test up to 33 kN was performed to check structural integrity of UCPS (Upper Core Plate Simulator) support frame. Test results show that all test equipment and measurement system have acceptable range of alignment, signal to noise ratio, load carrying capacity limit without loss of integrity. This paper introduces newly constructed fuel assembly's mechanical test facility and summarizes results of functional test for the mechanical test equipment and data acquisition system.

Theoretical Prediction of Noise Generated by Unsteady Loading of Marine Propellers (프로펠러의 비정상하중에 의해 발생하는 소음의 이론적 추정)

  • Chang-Sup Lee;Chung-Ho Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.3
    • /
    • pp.29-40
    • /
    • 1999
  • A numerical method in frequency domain for the analysis of the acoustic wave equation governing the sound field generated by a non-cavitating propeller under a steady of unsteady loading condition is developed. Theory shows that only multiples of the blade passage frequency exist and that the wave number consists of the frequency component due to the nonuniformity of the wake and the Doppler effect originated from the rotation of the blades. Correlation with experiments for a two bladed propeller, designed to be load-free at a particular advance speed, indicate that the thickness effect can be significant in steady case, but can be negligible compared to the unsteady loading effect.

  • PDF

Analysis Method Considering the Ground Reinforcement Effect of Micropile by Field Loading Tests (재하시험을 통한 소구경말뚝의 지반보강효과를 고려한 해석법)

  • Hong, Seok-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.89-99
    • /
    • 2009
  • Compared to standard piling methods, micropile construction can be used in downtown areas since it generates less vibration and noise. Since it only causes less soil disturbance, it is commonly used as reinforcement to existing structures. In this study, a field wherein the bearing capacity and settlement of soil can not support the weight of the superstructure was selected and micropiles were implemented instead of ordinary piles. The deformation modulus of the micropile reinforced ground was determined and was directly reflected in the design. Loading testing was used to check whether or not the allowable bearing capacity satisfies the condition of the designed bearing capacity. The computed deformation modulus based from the test was used in the numerical analysis of soil to investigate the stability of the foundation and analysis method. And a method for controlling the bearing capacity and settlement was recommended.

Analysis of Impact Responses Considering Sensor Dynamics (센서 동역학을 고려한 충격응답해석)

  • Ryu, B.J.;Kwon, B.H.;Ahn, K.Y.;Oh, I.S.;Lee, G.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.731-736
    • /
    • 2002
  • Impact is the most common type of dynamic loading conditions that give rise to impulsive forces and affects the vibrational characteristics of mechanical systems . Since the real impact force and acceleration at the contact surface are measured indirectly through the sensors, the measured outputs can be a little different from the real impact responses. In this study, the contact force model based on the Hertz law is proposed in order to predict the impact force correctly. To investigate the influence of the position of the sensor attached to the impacting bodies, the two kinds of sensors were used. Finally, the contact force model obtained by drop test was applied to predict the impact force between the moving part and the stopper in magnetic contactor.

  • PDF

A Modelling of Structural Excitation Forces Due to Wall Pressure Fluctuations in a Turbulent Boundary Layer (난류 경계층 내 벽면 변동 압력의 구조 기진력 모델링)

  • 홍진숙;신구균;김상윤
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.226-233
    • /
    • 2001
  • It is essential to analyze structural vibrations due to turbulent wall pressure fluctuations over a body surface which moves through a fluid, because the vibrations can be a severe source of noise affecting to passengers in airplanes and SONAR performance. Generally, this kind of problems have been solved for very simplified models, e.g. plates, which can be applied to the wavenumber domain analysis. In this paper, a finite element modeling of the walt pressure fluctuations is investigated, which can be applied to those over arbitrary smooth surfaces. It is found that the modeled wall pressure fluctuation at nodes becomes uncorrelated at higher frequencies and at lower flow speeds, and the response is over-estimated due to the aliased power. Then the frequency range available for uncorrelated loading model and two power correction schemes are presented.

  • PDF

Experimenal Study of Dynamic Characteristics of Brace-Typed Dampers using Vibration-resistant Rubbers (방진용 고무를 이용한 가새형 감쇠기의 진동 특성에 관한 실험 연구)

  • 민경원;김진구;조한묵;이성경;호경찬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.381-385
    • /
    • 1998
  • Vibration-resistant rubbers, whose elastic and shear behaviors are similar to viscoelastic materials, are used to make brace-typed dampers to reduce the building vibration. Experimental study is carried out to find the vibration characteristics of the dampers installed in the building model. The natural frequencies and modal damping ratios are obtained from the free vibration test and Fourier analysis. Analytical model of the modal strain energy method are used to find the viscoelastic characteristics of the brace-typed dampers from the experimental results. Finally shaking table test is performed to find the response behavior of the building model under earthquake loading. The present experimental study shows that the brace-typed dampers have the behavior of viscoelastic dampers, which increase the modal damping ratios and viscoelastic characteristics.

  • PDF

Design Program of Centrifugal Backward-Bladed and Forward-Bladed Fans (원심형 후향익 및 원심다익홴의 설계 프로그램)

  • Park, J.-C.;Son, J.-M;Lee, S.;Jo, S.-M.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.48-53
    • /
    • 2001
  • A centrifugal fan design code was developed and included in $DasignFan^{TM}$. This program generates forward -curved and backward-curved bladed centrifugal fan data. With the inverse design concept used in the code, the period of designing a fm, which has given aerodynamic performance with minimal acoustic noise, is significantly shortened.. A centrifugal fan design code, developed in this study and included in $DasignFan^{TM}$, predicts the aerodynamic performance by using mean-line analysis and various loss models. In the period of design a lift force distribution between pressure side and suction side of blade is calculated. And then it is used to calculate steady loading noise from the impeller.

  • PDF

Modal Analysis of Structures (구조물의 모달해석에 관한 연구)

  • Kim, Hong-Jin;Park, Je-Woo;Hwang, Jae-Seung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.665-668
    • /
    • 2008
  • The load distribution to each mode of a structure under seismic loading depends on the modal participation factor. The factor of an idealized analytical model, however, is different to the actual one due to modeling and construction error. Therefore, there exist limits on the estimation of actual behavior. In this study, an identification procedure for participation factor based on vibration test is proposed. The procedure has an advantage that the mode shape vector can also be estimated directly from the participation factor. The numerical simulation using a three story building is performed to evaluate the proposed procedure.

  • PDF

An analysis on the fluid-loading coefficient of cylindrical shell using COSINE series (COSINE 급수를 이용한 원통형 셀의 유체 영향계수 해석)

  • 정우진;전재진;이헌곤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.334-339
    • /
    • 1995
  • COSINE 급수를 이용한 유한 길이 원통형 셀의 유체 영향계수에 대한 해석결과를 양단 단순지지 조건(Simply-supported condition)을 갖는 해석모델에서 이용한 SINE 급수를 적용한 해석 결과와 비교, 검토한 결과 유사한 경향을 보이고 있으며, 무차원 파수 ka 값이 커질수록 Reactance는 0으로 접근하고 Resistance는 .rho.c 값으로 접근하는 경향을 가지고 있어 타당한 해석방법임을 알 수 있었다. 따라서 양단에 끝막이 판을 갖고 있는 원통형 셀에 대한 음압복사 현상을 해석하는데 COSINE 급수를 이용하는 것이 가능함을 본 연구를 통하여 확인하였다. 또한 본 연구에서 유도한 Z$_{mm}$값을 이용하면 양단에 끝막이 판을 갖고 있는 원통형 셀에서의 유체 효과를 용이하게 해석할 수 있다.

  • PDF