• Title/Summary/Keyword: Noise level evaluation

Search Result 436, Processing Time 0.044 seconds

Basic Study on the Performance Improvement of HD Diesel Engine (대형 디젤엔진의 소음 개선에 대한 기초 연구)

  • 김규철;이삼구;주봉철;노병준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.181-188
    • /
    • 2001
  • The evaluation of the noise for the an existing engine was carried out to improve the current noise level. The applied techniques were 1m air-borne noise, combustion noise analysis, torsional analysis at the front pulley and sound pressure intensity. In addition, the evaluation of the possibility to the noise reduction by means of wrapping the parts was performed to propose the detailed information in engine design. In view of the obtained results, the following countermeasures were recommended to reduce the current noise level through the above methods. Furthermore, in order to assess the influence of combustion noise on the overall engine noise, the noise test was also performed by the change of intake air temperature up to 5$0^{\circ}C$ in steps of 1$0^{\circ}C$. Finally, the fixed design specifications to reduce the engine noise will be decided in consideration of the test data for proto type engine.

  • PDF

The Sound Quality Evaluation and preference Analysis of Vacuum Cleaner (진공 청소기의 음질 평가 및 선호도 분석)

  • Jung, Dong-Hyun;Park, Sang-Gil;Fawazi, Noor;Lee, You-Yub;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1297-1301
    • /
    • 2007
  • The Conventional noise control attempts to simply reduce the level of product noise. But it is very straight forward way that we have consider human perception on noise. Since human listening is very sensitive to sound. Evaluation of the sound quality of a Vacuum Cleaner is studied base on human sensibility engineering. In this paper, we choose two Vacuum Cleaners that are sold in Korea and reduced noise control. Comparison Method is used to evaluate noise and preference of Vacuum Cleaner by steps. The sound quality of Vacuum Cleaner noise is analyzed by employing the subjective evaluation and by representing them in terms of the objective quantities. Semantic Differential Method is used to study sound quality Evaluation. To analyze the sound quality of Vacuum Cleaner noise, consider the coefficients of correlation between sound metrics and subjective rating. The linear regression models were obtained for the subjective evaluation and sound quality metrics.

  • PDF

Evaluation of Car Interior Noise by Using EEG (뇌파를 이용한 적정 자동차 내부소음의 평가)

  • 김정룡;박창순
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.65
    • /
    • pp.65-73
    • /
    • 2001
  • In this study, psychophysiological stress was quantitatively evaluated at various car interior noise levels by using Electroencephalogram(EEG). An experiment was performed to investigate the most comfortable range of noise level during simulated driving condition. Twelve healthy volunteers participated in the experiment. They were asked to operate the driving simulator while six levels of interior noise were given, such as 45dB(A), 50dB(A), 55dB(A), 60dB(A), 70dB(A), 80dB(A), and maximal subjective noise level. EEG signals were recorded for 60 seconds in each noise level. The power spectral analysis was performed to analyze EEG signal. At the same time, psychological stress was also measured subjectively by using a magnitude estimation method. The results showed that subjective stress and EEG spectrum indicated a statistically significant difference between noise levels. In particular, high level noise produced an increase in beta power at temporal(T3, T4) areas. It was also found that beta activity was highly correlated with subjective perception of discomfort, and subjects responded to car interior noise as arousing or negative stimuli. Moreover, beta power remained stable above 70dB(A), whereas subjective discomfort continued to increase even above 70dB(A) We concluded that brain waves could provide psychophysiological information of drivers emotional reaction to car interior noise. Thus, EEG parameters could be a new measure to determine optimal noise level in ergonomic workplace design after further verification in various experimental conditions.

  • PDF

Evaluation of Whole-Body Vibration and Occupational Noise for Excavator Drivers (굴삭기 운전자의 전신진동 및 작업소음 평가)

  • Youn, Jeong-Taek;Park, Sang-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.125-131
    • /
    • 2000
  • This study was performed to evaluate the whole-body vibration and occupational noise for excavator drivers. Measurement, evaluation and assessment were based on the ISO 2631 and OSHA. Average vibration level was 0.65m/$s^2$(z axis) for breaking work and 0.36 m/$s^2$(z axis) for excavating work. Vibration levels during breaking work exceed the health guidance caution zone and this means that the drivers are exposed to potential health risks. Average daily noise exposure level was 86.4 dB(A) for breaking work and 84.6 dB(A) for excavating work.

  • PDF

Evaluation of noise level in the training ship, Saehaerim (실습선 새해림호의 선내 소음도에 대한 평가)

  • HWANG, Bo-Kyu;KIM, Min-Son
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.1
    • /
    • pp.69-77
    • /
    • 2021
  • The noise environment was evaluated using the ISO recommended NR evaluation curve and PSIL (Preferred Sound Interference Level) in order to investigate the onboard educational environment according to the noise in the Motor Vessel Saehaerim, a fishing training ship under making way. As a result, NRNs were measured at 37-61 dB in accommodation areas, 44-56 dB in work areas, 37-57 dB in educational and conference areas, 83-103 dB in engine areas and 65.3 dB and 51.2 dB in the work and education areas respectively based on PSIL. The NRNs, which evaluated the cabin of the experimental ship according to the purpose, exceeded all of the indoor standard noise recommended by the ISO, and the PSIL had a generally short conversational distance within 0.25-2.3 m and 0.75-1.3 m for teaching and work areas.

Evaluation of Noise Level and Blind Quality in CT Images using Advanced Modeled Iterative Reconstruction (ADMIRE) (고급 모델 반복 재구성법 (ADMIRE)을 사용한 CT 영상에서의 노이즈 레벨 및 블라인드 화질 평가)

  • Shim, Jina;Kang, Seong-Hyeon;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.203-209
    • /
    • 2022
  • One of the typical methods for lowering radiation dose while maintaining image quality of computed tomography (CT) is the use of model-based iterative reconstruction (MBIR). This study is to evaluate the image quality by adjusting the strength of the advanced modeled iterative reconstruction (ADMIRE), which is well known as a representative model of MBIR. The study was conducted using phantom, and CT images were obtained while adjusting the strength of ADMIRE in units of 1 to 5. Quantitative evaluation includes noise levels using coefficient of variation (COV) and contrast to noise ratio (CNR), as well as natural image quality evaluation (NIQE) and blind/referenceless image spatial quality evaluator (BRISQUE). As a result, in both noise level and blind quality evaluation results, the higher the strength of ADMIRE, the better the results were derived. In particular, it was confirmed that COV and CNR were improved 1.89 and 1.75 times at ADMIRE 5 compared to ADMIRE 1, respectively, and NIQE and BRISQUE were proved to be improved 1.35 and 1.22 times at ADMIRE 5 compared to ADMIRE 1, respectively. In conclusion, this study was proved that the reconstruction strength of ADMIRE had a great influence on the noise level and overall image quality evaluation of CT images.

A Study on Examination of Propriety about L eq24 in Road Traffic Noise Environment Standard Evaluation (도로 교통소음의 환경평가 단위인 24시간 등가소음레벨에 대한 적정성 검토에 관한 연구)

  • Kim, Byoung-Sam;Chi, Chang-Heon;Choi, Hong-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.3 s.120
    • /
    • pp.274-281
    • /
    • 2007
  • Road traffic noise is not produced by any one factor rather it occurs as a composition of various factors. Its occurrence is made by running engine noise, tire frictional, and exhaust noise etc. The quality of the noise depends on the size of the vehicles, rotation and engine speed, vehicle load, package state of the road and incline etc. The occurrence of any noise level of heavy trucks appears louder than smaller vehicles and the noise levels produced differs according to speed and load etc between similar size vehicles. Other factors such as traffic density, average speed, mixing rate of heavy vehicles, and the distance between vehicles also generate road traffic noise. In this paper we examine 2, 4, and 6-lane roads in Jeonju. Consequently, this study examines the means used to measure road traffic noise. It was found that when there is a large traffic density and the average velocity is below 70 km/h, the noise level could receive a relative proper value by the current measuring means. But in the case of night-time, it was found that the current measuring method is inapposite.

An Experimental Evaluation for Vehicle Road Noise on the Pattern Noise Prediction (자동차 타이어 패턴 소음 예측에 따른 차량 Road Noise 실험적 평가)

  • Wang, Sung-Joon;Lee, Keun-Soo;Kim, In-Dong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.361-364
    • /
    • 2011
  • In this paper, This work demonstrates a experimental evaluation for vehicle road noise NVH performance from the component-level NVH measurements of Tire. The power unit noise from tire emitted by cars has been reduced. It has been found that tire noise dominates noise produced by the power train when vehicles are driven at high constant speed. Therefore tire pattern noise is affected by pattern and vehicle and transmission loss. Tire noise mechanism is generated by several mechanisms. The sound of tire can propagate either through the air or through the structure of vehicle. Pattern noise is the result of pressure variations through the air to the interior side of vehicle. Especially, smooth asphalt, the periodicity of tread design, groove depth is important factor, which have an influence on the reduction of tire pattern noise.

  • PDF

Sound Quality Evaluation of the Level D Noise for the vehicle using Mahalanobis Distance (Mahalanobis Distance 를 이용한 차량 D 단 소음의 음질 평가)

  • Park, Sang-Gil;Park, Won-Sik;Sim, Hyoun-Jin;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.311-317
    • /
    • 2007
  • The reduction of the Vehicle interior noise has been the main interest of NVH engineers. The driver's perception on the vehicle noise is affected largely by psychoacoustic characteristic of the noise as well as the SPL. The previous methods to evaluation of the SQ about vehicle interior noise are linear regression analysis of subjective SQ metrics by statistics and the estimation of the subjective SQ values by neural network. But these are so depended on jury test very much that they result in many difficulties. So, to reduce jury test weight, we suggested a new method using Mahalanobis distance for SQ evaluation. And, optimal characteristic values influenced on the result of the SQ evaluation were derived by signal to noise ratio(SN ratio) of the Taguchi method. Finally, the new method to evaluate SQ is constructed using Mahalanobis-Taguchi system(MTS). Furthermore, the MTS method for SQ evaluation was compared by the result of SQ grade table at the previous study and their virtues and faults introduced.

  • PDF

Sound Quality Evaluation and Grade Construction of the Level D Noise for the Vehicle Using MTS (MTS기법을 이용한 차량 D단 소음의 음질 평가 및 음질 등급화 구축)

  • Park, Sang-Gil;Park, Won-Sik;Sim, Hyoun-Jin;Lee, Jung-Youn;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.393-399
    • /
    • 2008
  • The reduction of the Vehicle interior noise has been the main interest of NVH engineers. The driver's perception on the vehicle noise is affected largely by psychoacoustic characteristic of the noise as well as the SPL. The previous methods to evaluation of the SQ about vehicle interior noise are linear regression analysis of subjective SQ metrics by statistics and the estimation of the subjective SQ values by neural network. But these are so depended on jury test very much that they result in many difficulties. So, to reduce jury test weight, we suggested a new method using Mahalanobis distance for SQ evaluation. And, optimal characteristic values influenced on the result of the SQ evaluation were derived by signal to noise ratio(SN ratio) of the Taguchi method. Finally, the new method to evaluate SQ is constructed using Mahalanobis-Taguchi system(MTS). Furthermore, the MTS method for SQ evaluation was compared by the result of SQ grade table at the previous study and their virtues and faults introduced.