• Title/Summary/Keyword: Noise insulation

Search Result 447, Processing Time 0.039 seconds

Classification of Noise Insulation Performance in Apartment Buildings through Noise survey and Auditory Experiment (설문조사와 청감실험을 통한 공동주택 차음성능의 평가등급 설정)

  • Ryu, Jong-Kwan;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.666-669
    • /
    • 2005
  • Social noise survey and auditory experiment on residential noises such as floor impact, air-borne, bathroom, drainage and traffic noises were conducted to classily a noise insulation Performance in apartment building. The survey results showed that annoyance among subjective responses to residential noises was most greatly affecting to satisfaction with noises. In the survey, boundary limit between satisfaction and dissatisfaction was also determined. Auditory experiments was also undertaken to determine noise insulation performance according to the percent of satisfaction for individual noise source. Result of auditory experiment showed that the noise insulation performance for floor impact, airborne, drainage and traffic noise corresponding to 40 % satisfaction is 49 dB (L$_{i,Fmax,AW}$), 48 dB (R'w), N-41, and N-40, respectively. Finally, classes of noise insulation performance in apartment building were proposed according to satisfaction with noises

  • PDF

Comparison of vibration and noise characteristic of high efficiency Insulation Panel for Transformer (변압기용 고효율 차음판의 진동 및 소음 비교)

  • Jeong, J.H.;Jang, Y.S.;Lim, D.S.;Kim, J.;Choi, B.K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.1005-1009
    • /
    • 2008
  • The high efficiency insulation panel for transformer construction is needed in residential area because the making noise from transformer substation in side of city is appeared a lost of problem by increasing to conserve the living environment. Therefor in this paper, first the vibration and noise characteristic of existing insulation panel is analyzed according to attached material, cork and sponge-type. Second the insulation of sound performance is compared between the existing insulation panel. And high efficiency insulation panel that is proposal in this paper.

  • PDF

Recuction of the Influence of Background Noise in Sound Insulation Measurement (차음성능 측정에 있어서의 암소음의 영향의 저감 (1))

  • 염성곤;다치바나히데끼
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.495-498
    • /
    • 2004
  • In the sound insulation measurements, the influence of background (extraneous) noise is often serious problem and how to reduce its effect and to improve the signal-to-noise(S/N) ratio is an important theme. As the background noise, such extraneous noises as road traffic noise and machine noise often disturb the measurement. In laboratory measurements on specimens with high sound insulation performances, even the internal noise of the measurement system can become a problem. To improve the signal-to-noise ratio and to improve the measurement accuracy, various kinds of digital signal processing techniques can be applied. In this paper, four kinds of digital signal processing techniques are applied and their effectiveness is examined by a simple sound insulation measurement.

  • PDF

Variation of the Sound Insulation Performance of Window in the Apartment House depending on the Sound Source Characteristics (공동주택에서 음원특성에 따른 외부창호 차음성능 변화)

  • Park, Hyeon-Ku;Lee, Ok-Kyun;Han, Dong-Hwa;Song, Hyuk;Kim, Sun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1735-1740
    • /
    • 2000
  • The aim of this study is to analyze the sound insulation performance of windows depending on the sound source types and to propose the noise control method in the apartment house. The regions where apartment houses are constructed are varied in the dominant noise sources such as aircraft noise, railway noise and road traffic noise. For the experiment, nine noise sources including pink noise were selected and recorded, which was used in the experiment by reproducing. As a result of this study, the sound insulation performance of window was found that when the frequency contents of the noise were high level in all frequency bands the difference of sound insulation performance was negligible, but when the frequency contents were low level at particular frequency band the difference of sound insulation performance was shown very differently.

  • PDF

The vibration and noise characteristics analysis of Sound Insulation Panel for Transformer (변압기용 차음판의 진동 소음 특성 분석)

  • Joeng, Han-E;Kim, H.J.;Gu, D.S.;Choi, B.K.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.78-82
    • /
    • 2006
  • Recently, The demands for the reduction of noise generated by transformers have been increasing. Almost all of the noise generated by transformers is a result of magnetostricitive vibration in the core. The noise radiates into the atmosphere from the tank through the insulation oil. As the noise of transformer irritates residents, needs for decreasing the noise of transformer have been arised. One method of reduction such a noise is to build a free-standing enclosure of concrete and steel plates around the transformer. However, this method has some disadvantages. Another method of noise reduction is to mount a close-fitting sound insulation panel on the side of a transformer tank. Side plate vibrations of transformer are transmitted to such a sound insulation panel along two paths. In one case, they are transmitted through air by sound pressure and in the other through supporting structures. In the paper, the vibration and noise effect which is transferred from reinforce channel to insulation panel generated by transformer have been identified for the several kinds of insulation panel and damping sheet analytically and experimetally.

  • PDF

Field Measurement of Airborne Sound Insulation for Noise Reduction about Community Facilities in an Apartment Complex (공동주택 단지 내 주민공동시설의 소음 방지를 위한 공기전달음 차단 성능 현장 조사)

  • Seong, Yo-Han;Kim, Jin-Sik;Kim, Hye-Won;Cho, Seong-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.249-250
    • /
    • 2023
  • The objective of this study is to evaluate the airborne sound insulation performance between housing units and community facilities during the construction phase. Community facilities adjacent to housing units can lead to noise problems, hence it is necessary to minimize noise transmission during the design phase. However, flanking noise transmitted through gaps of structures, windows, pipes, and other openings may result in substandard sound insulation performance falling below the design standards. Therefore, It is crucial to measure airborne sound insulation in the field during the construction phase. The measurement was conducted using the survey method for the field measurement of the airborne sound insulation in accordance with KS F ISO 10052:2021. Although the noise standards caused by community facilities in apartment complexes are not specified in current laws and regulations, desired noise level was set based on international guidelines for indoor noise. First, the level of noise generated in community facilities was estimated, and then the sound insulation performance was evaluated to determine whether the desired noise level was achieved.

  • PDF

Characteristic of Vibration and Sound of Sound Insulation Panel for Transformer (변압기용 차음판의 진동 및 소음 특성)

  • Choe, C.R.;Choi, B.K.;Yang, B.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.255-258
    • /
    • 2005
  • Recently, demands for the reduction of noise generated by transformers have been increasing. Almost all the noise generated by a transformer is a result of magnetostrictive vibration in the core. The noise radiates into the atmosphere from the tank through the insulation oil. One method of reduction such a noise is to build a free-standing enclosure of concrete and steel plates around the transformer. However, this method has some disadvantages, for example, a large area is needed for equipment installation. In this paper, the vibration and noise effects which is transferred from reinforce channel to insulation panel generated by transformer have been identified for the several kinds of insulation panel shape and damping sheet experimentally.

  • PDF

Acoustic Study of light weight insulation system on Dash using SEA technique (SEA 기법을 이용한 저중량 대시판넬 흡,차음재 성능에 대한 연구)

  • Lim, Hyo-Suk;Park, Kwang-Seo;Kim, Young-Ho;Kim, In-Dong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.51-55
    • /
    • 2007
  • In this paper Statistical Energy Analysis has been considered to predict high frequency air borne interior noise. Dash panel Insulation is major part to reduce engine excitation noise. Transmission loss and absorption coefficient are considered to predict dash insulation performance. Transmission lose is derived from coupling loss factor and absorption coefficient is derived from internal damping loss factor. Material Biot properties were used to calculate each loss factors. Insulation geometry thickness distribution was hard to measure, so FeGate software was used to calculate thickness map from CAD drawing. Each predicted transmission losses between conventional insulation and light weight insulation were compared with SEA. Transmission loss measurement was performed to validate each prediction result, and it showed good correlation between prediction and measurement. Finally interior noise prediction was performed and result showed light weight insulation system can reduce 40% weight to keep similar performance with conventional insulation system, even though light weigh insulation system has lower sound transmission loss and higher absorption coefficient than conventional system.

  • PDF

Recuction of the Influence of Background Noise in Sound Insulation Measurement (차음성능 측정에 있어서의 암소음의 영향의 저감 (2))

  • Yum, Sung-Gon;Tachibana, Hideki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.441-444
    • /
    • 2004
  • In the sound insulation measurements, the influence of background (extraneous) noise is often serious problem and how to reduce its effect and to improve the signal-to-noise(S/N) ratio is an important theme. As the background noise, such extraneous noises as road traffic noise and machine noise often disturb the measurement. In laboratory measurements on specimens with high sound insulation performances, even the internal noise of the measurement system can become a problem. To improve the signal-to-noise ratio and to improve the measurement accuracy, various kinds of digital signal processing techniques can be applied. In this paper, four kinds of digital signal processing techniques are applied and their effectiveness is examined through field measurements.

  • PDF

Sound Insulation Performance According to Stud Shape of Dry Wall (스터드 형상에 따른 Dry Wall의 차음성능변화)

  • An, JangHo;Kim, KyungHo;Lee, HunSeo;Kim, SeongHoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.407-412
    • /
    • 2013
  • In dry wall, noise is passed through gypsum board and stud. Noise makes gypsum board vibration. Then, the vibration passes through stud and gypsum board as resonation. And radiation as noise from surface of gypsum board into adjacent room. At this moment, according to thickness, placement and cross-section of stud, noise transmission ratio changes. Thicker stud has better sound insulation performance. Studs are apart from each other, has better sound insulation performance. But, single stud structure has restriction of thickness and arrange of studs. In this article, Sound insulation performance varies depending on the shape of the studs were studied.

  • PDF