• 제목/요약/키워드: Nodal theory

검색결과 85건 처리시간 0.024초

PWR 소격격자 Nodal 계산에의 균질화 이론 적용 (An Application of Homogenization Theory to the Coarse-Mesh Nodal Calculation of PWRs)

  • Myung Hyun Kim;Jonghwa Chang;Kap Suk Moon;Chang Kun Lee
    • Nuclear Engineering and Technology
    • /
    • 제16권4호
    • /
    • pp.202-216
    • /
    • 1984
  • Nodal method가 소격격자 해석방법의 하나로 정립됨으로써, 계산격자가 비교적 크더라도 각 격자의 평균출력분포를 정확히 계산할 수 있게 하는 균질화변수틀 찾는 방법이 중요하게 되었다. 본 연구에서는 simplified equivalence theory와 approximate node equivalence theory의 두가지 근사방법을 가압경수형 원자로 문제에 적응하여 시험하여 보았다. 균질화계산과 노심분석계산 방법으로서 analytic nodal method에 기초를 둔 ANM 코드를 개발하였다. 여러 균질화 방법외 정확성을 KTDD 코드에 의한 reference solution과 비교하여 본 결과, 균질화 계산은 핵연료영역에서는 영역별 핵연료집합체 계산으로, baffle과 reflector의 공존 격자영역은 이들을 포함하는 color set 계산으로 수행할 수 있음을 알았다. Approximate node equivalence theory에 입각해서 approximate homogenized cross-section들과 approximate discontinuity factor들의 균질화 변수를 사용하면 출력분포와 임계도가 각각 0.8%, 0,1% 오차 범위내에서 예측되었다.

  • PDF

DEFORMATION OF LOCALLY FREE SHEAVES AND HITCHIN PAIRS OVER NODAL CURVE

  • Sun, Hao
    • 대한수학회지
    • /
    • 제57권4호
    • /
    • pp.809-823
    • /
    • 2020
  • In this article, we study the deformation theory of locally free sheaves and Hitchin pairs over a nodal curve. As a special case, the infinitesimal deformation of these objects gives the tangent space of the corresponding moduli spaces, which can be used to calculate the dimension of the corresponding moduli space. The deformation theory of locally free sheaves and Hitchin pairs over a nodal curve can be interpreted as the deformation theory of generalized parabolic bundles and generalized parabolic Hitchin pairs over the normalization of the nodal curve, respectively. This interpretation is given by the correspondence between locally free sheaves over a nodal curve and generalized parabolic bundles over its normalization.

Development of the Discrete-Ordinates, Nodal Transport Methods Using the Simplified Even-Parity Neutron Transport Equation

  • Noh, Taewan
    • Nuclear Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.605-617
    • /
    • 2000
  • Nodal transport methods are studied for the solution of two dimensional discrete-ordinates, simplified even-parity transport equation(SEP) which is known to be an approximation to the true transport equation. The polynomial expansion nodal method(PEN) and the analytic function expansion nodal method(AFEN)which have been developed for the diffusion theory are used for the solution of the discrete-ordinates form of SEP equation. Our study shows that while the PEN method in diffusion theory can directly be converted without complication, the AFEN method requires a theoretical modification due to the nonhomogeneous property of the transport equation. The numerical results show that the proposed two methods work well with the SEP transport equation with higher accuracies compared with the conventional finite difference method.

  • PDF

절대절점좌표를 이용한 탄성 다물체동역학 해석에서의 동응력 이력 계산에 관한 연구 (Computation of Dynamic Stress in Flexible Multi-body Dynamics Using Absolute Nodal Coordinate Formulation)

  • 서종휘;정일호;박태원
    • 한국정밀공학회지
    • /
    • 제21권5호
    • /
    • pp.114-121
    • /
    • 2004
  • Recently, the finite element absolute nodal coordinate formulation (ANCF) was developed for the large deformation analysis of flexible bodies in multi-body dynamics. This formulation is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. In this paper, a computation method of dynamic stress in flexible multi-body dynamics using absolute nodal coordinate formulation is proposed. Numerical examples, based on an Euler-Bernoulli beam theory, are shown to verify the efficiency of the proposed method. This method can be applied for predicting the fatigue life of a mechanical system. Moreover, this study demonstrates that structural and multi-body dynamic models can be unified in one numerical system.

3D nonlinear mixed finite-element analysis of RC beams and plates with and without FRP reinforcement

  • Hoque, M.;Rattanawangcharoen, N.;Shah, A.H.;Desai, Y.M.
    • Computers and Concrete
    • /
    • 제4권2호
    • /
    • pp.135-156
    • /
    • 2007
  • Three 3D nonlinear finite-element models are developed to study the behavior of concrete beams and plates with and without external reinforcement by fibre-reinforced plastic (FRP). All three models are formulated based upon the 3D theory of elasticity. The stress model is modified from the element developed by Ramtekkar, et al. (2002) to incorporate material nonlinearity in the formulation. Both transverse stress and displacement components are used as nodal degrees-of-freedom to ensure the continuity of both stress and displacement components between the elements. The displacement model uses only displacement components as nodal degrees-of-freedom. The transition model has both stress and displacement components as nodal degrees-of-freedom on one surface, and only displacement components as nodal degrees-of-freedom on the opposite surface. The transition model serves as a connector between the stress and the displacement models. The developed models are validated by comparing the results of the analyses with an existing experimental result. Parametric studies of the effects of the externally reinforced FRP on the load capacity of reinforced concrete (RC) beams and concrete plates are performed to demonstrate the practicality and the efficiency of the proposed models.

Nonlinear Dynamic Analysis of a Large Deformable Beam Using Absolute Nodal Coordinates

  • Jong-Hwi;Il-Ho;Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권4호
    • /
    • pp.50-60
    • /
    • 2004
  • A very flexible beam can be used to model various types of continuous mechanical parts such as cables and wires. In this paper, the dynamic properties of a very flexible beam, included in a multibody system, are analyzed using absolute nodal coordinates formulation, which is based on finite element procedures, and the general continuum mechanics theory to represent the elastic forces. In order to consider the dynamic interaction between a continuous large deformable beam and a rigid multibody system, a combined system equations of motion is derived by adopting absolute nodal coordinates and rigid body coordinates. Using the derived system equation, a computation method for the dynamic stress during flexible multibody simulation is presented based on Euler-Bernoulli beam theory, and its reliability is verified by a commercial program NASTRAN. This method is significant in that the structural and multibody dynamics models can be unified into one numerical system. In addition, to analyze a multibody system including a very flexible beam, formulations for the sliding joint between a very deformable beam and a rigid body are derived using a non-generalized coordinate, which has no inertia or forces associated with it. In particular, a very flexible catenary cable on which a multibody system moves along its length is presented as a numerical example.

단순 우성 중성자 수송방정식을 이용한 노달 수송해법 (Nodal Transport Methods Using the Simplified Even-Parity Neutron Transport Equation)

  • 노태완
    • 방사성폐기물학회지
    • /
    • 제16권2호
    • /
    • pp.211-221
    • /
    • 2018
  • 중성자 확산방정식에 대해 개발된 노달 확산이론을 단순 우성 중성자 수송방정식에 적용할 수 있는 노달 수송이론을 제시한다. 노달이론으로 다항식전개 노달법과 해석함수전개 노달법을 채택하였고 단순 우성 수송방정식은 수송방정식에 대한 합리적 근사이며 기존의 노달해법이 방향 차분된 단순 우성 수송방정식에 정확히 적용될 수 있음을 수치적으로 확인하였다. 본 연구에서는 방법론 개발이 목적이므로 노드 당 최소한의 미지수를 정의하여 사용했지만 미지수를 추가함으로써 정확도를 증가시킬 수 있음은 기존의 노달 확산이론의 경우와 같다. 즉 중성자 수송방정식에 대해 노달이론을 적용하여 소격격자에 대해 계산 정확성이 확보되고 이는 결국 계산 효율성 증대로 나타난다.

3차원 공간에서 코일스프링의 강성에 관한 연구 (A Study on the Stifness of Coil Spring in the Three Dimensional Space)

  • 이수종
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권5호
    • /
    • pp.1130-1139
    • /
    • 2001
  • Springs are widely utilized in machine element. To find out stiffness of coil spring, the space beam theory using the finite element method is adopted in this paper. In three dimensional space, a space frame element is a straight bar of uniform cross section which is capable of resisting axial forces, bending moments about two principal axes in the plane of its cross section and twisting moment about its centroidal axis. The corresponding displacement degrees of freedom are twelve. The displacements of nodal points due to small increment of force are calculated by the finite element method and the calculated nodal displacements are added to coordinates of nodal points. The new stiffness matrix of the system using the new coordinates of nodal points is adopted to calculated the another increments of nodal displacements, that is, the step by step method is used in this paper. The results of the finite element method are fairly well agreed with those of various experiments. Using MATLAB program developed in this paper, spring constants can be predicted by input of few factors.

  • PDF

웨이브 와셔 스프링의 비선형성에 관한 연구 (A Study on the non -linearity of wave washer spring)

  • 이수종;왕지석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권3호
    • /
    • pp.246-255
    • /
    • 1997
  • The wave washer springs are expected to behave non-linearly between forces and displace¬ments due to contractions of the height and due to expansions in radial direction. To find out the non -linearity of wave washer springs, the three dimensional plate analysis theory using the finite element method is adopted in this paper. The wave washer springs are considered to be three dimensional plate structures rather than frame structures, because their thickness is normally much smaller than their width. The displacements of nodal points due to small increment of force are calculated by the finite element method and the calculated nodal displacements are added to X - Y Z coordinates of nodal points. The new stiffness matrix of the system using the new coordinates of nodal points is adopted to calculate the another nodal displacements, that is, the step by step method is used in this paper. The relations between the increments of forces and displacements in each step are recorded and plotted in chart. The experimental results are compared with the calculated chart and it is shown that there are good coincidences between measured values and calculated ones.

  • PDF

원추형 코일스프링의 강성에 대한 연구 (A Study on the Stiffness of Frustum-shaped Coil Spring)

  • 김진훈;이수종;이경호
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 추계학술대회 논문집(Proceeding of the KOSME 2001 Autumn Annual Meeting)
    • /
    • pp.21-27
    • /
    • 2001
  • Springs are widely utilized in machine element. To find out stiffness of frustum-shaped coil spring, the space beam theory using the finite element method is adopted in this paper In three dimensional space, a space frame element is a straight bar of uniform cross section which is capable of resisting axial forces, bending moments about two principal axes in the plane of its cross section and twisting moment about its centroidal axis. The corresponding displacement degrees of freedom are twelve. To find out load vector of coil spring subjected to distributed compression, principle of virtual work is adapted The displacements of nodal points due to small increment of force are calculated by the finite element method and the calculated nodal displacements are added to coordinates of nodal points. The new stiffness matrix of the system using the new coordinates of nodal points is adopted to calculate the another increments of nodal displacements, that is, the step by step method is used in this paper. The results of the finite element method are fairly well agreed with those of various experiments. Using MATLAB program developed in this paper, spring constants and stresses can be predicted by input of few factors.

  • PDF