• 제목/요약/키워드: Nodal theory

Search Result 85, Processing Time 0.027 seconds

An Application of Homogenization Theory to the Coarse-Mesh Nodal Calculation of PWRs (PWR 소격격자 Nodal 계산에의 균질화 이론 적용)

  • Myung Hyun Kim;Jonghwa Chang;Kap Suk Moon;Chang Kun Lee
    • Nuclear Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.202-216
    • /
    • 1984
  • The success of coarse-mesh nodal solution methods provides strong motivation for finding homogenized parameters which, when used in global nodal calculation, will reproduce exactly all average nodal reaction rates for large nodes. Two approximate theories for finding these ideal parameters, namely, simplified equivalence theory and approximate node equivalence theory, are described herein and then applied to the PWR benchmark problem. Nodal code, ANM, is used for the global calculation as well as for the homogenization calculation. From the comparative analysis, it is recommended that homogenization be carried out only for the unique type of fuel assemblies and for core boundary color-sets. The use of approximate homogenized cross-sections and approximate discontinuity factors predicts nodal powers with maximum error of 0.8% and criticality within 0.1% error relative to the fine-mesh KIDD calculations.

  • PDF

DEFORMATION OF LOCALLY FREE SHEAVES AND HITCHIN PAIRS OVER NODAL CURVE

  • Sun, Hao
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.809-823
    • /
    • 2020
  • In this article, we study the deformation theory of locally free sheaves and Hitchin pairs over a nodal curve. As a special case, the infinitesimal deformation of these objects gives the tangent space of the corresponding moduli spaces, which can be used to calculate the dimension of the corresponding moduli space. The deformation theory of locally free sheaves and Hitchin pairs over a nodal curve can be interpreted as the deformation theory of generalized parabolic bundles and generalized parabolic Hitchin pairs over the normalization of the nodal curve, respectively. This interpretation is given by the correspondence between locally free sheaves over a nodal curve and generalized parabolic bundles over its normalization.

Development of the Discrete-Ordinates, Nodal Transport Methods Using the Simplified Even-Parity Neutron Transport Equation

  • Noh, Taewan
    • Nuclear Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.605-617
    • /
    • 2000
  • Nodal transport methods are studied for the solution of two dimensional discrete-ordinates, simplified even-parity transport equation(SEP) which is known to be an approximation to the true transport equation. The polynomial expansion nodal method(PEN) and the analytic function expansion nodal method(AFEN)which have been developed for the diffusion theory are used for the solution of the discrete-ordinates form of SEP equation. Our study shows that while the PEN method in diffusion theory can directly be converted without complication, the AFEN method requires a theoretical modification due to the nonhomogeneous property of the transport equation. The numerical results show that the proposed two methods work well with the SEP transport equation with higher accuracies compared with the conventional finite difference method.

  • PDF

Computation of Dynamic Stress in Flexible Multi-body Dynamics Using Absolute Nodal Coordinate Formulation (절대절점좌표를 이용한 탄성 다물체동역학 해석에서의 동응력 이력 계산에 관한 연구)

  • 서종휘;정일호;박태원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.114-121
    • /
    • 2004
  • Recently, the finite element absolute nodal coordinate formulation (ANCF) was developed for the large deformation analysis of flexible bodies in multi-body dynamics. This formulation is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. In this paper, a computation method of dynamic stress in flexible multi-body dynamics using absolute nodal coordinate formulation is proposed. Numerical examples, based on an Euler-Bernoulli beam theory, are shown to verify the efficiency of the proposed method. This method can be applied for predicting the fatigue life of a mechanical system. Moreover, this study demonstrates that structural and multi-body dynamic models can be unified in one numerical system.

3D nonlinear mixed finite-element analysis of RC beams and plates with and without FRP reinforcement

  • Hoque, M.;Rattanawangcharoen, N.;Shah, A.H.;Desai, Y.M.
    • Computers and Concrete
    • /
    • v.4 no.2
    • /
    • pp.135-156
    • /
    • 2007
  • Three 3D nonlinear finite-element models are developed to study the behavior of concrete beams and plates with and without external reinforcement by fibre-reinforced plastic (FRP). All three models are formulated based upon the 3D theory of elasticity. The stress model is modified from the element developed by Ramtekkar, et al. (2002) to incorporate material nonlinearity in the formulation. Both transverse stress and displacement components are used as nodal degrees-of-freedom to ensure the continuity of both stress and displacement components between the elements. The displacement model uses only displacement components as nodal degrees-of-freedom. The transition model has both stress and displacement components as nodal degrees-of-freedom on one surface, and only displacement components as nodal degrees-of-freedom on the opposite surface. The transition model serves as a connector between the stress and the displacement models. The developed models are validated by comparing the results of the analyses with an existing experimental result. Parametric studies of the effects of the externally reinforced FRP on the load capacity of reinforced concrete (RC) beams and concrete plates are performed to demonstrate the practicality and the efficiency of the proposed models.

Nonlinear Dynamic Analysis of a Large Deformable Beam Using Absolute Nodal Coordinates

  • Jong-Hwi;Il-Ho;Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.50-60
    • /
    • 2004
  • A very flexible beam can be used to model various types of continuous mechanical parts such as cables and wires. In this paper, the dynamic properties of a very flexible beam, included in a multibody system, are analyzed using absolute nodal coordinates formulation, which is based on finite element procedures, and the general continuum mechanics theory to represent the elastic forces. In order to consider the dynamic interaction between a continuous large deformable beam and a rigid multibody system, a combined system equations of motion is derived by adopting absolute nodal coordinates and rigid body coordinates. Using the derived system equation, a computation method for the dynamic stress during flexible multibody simulation is presented based on Euler-Bernoulli beam theory, and its reliability is verified by a commercial program NASTRAN. This method is significant in that the structural and multibody dynamics models can be unified into one numerical system. In addition, to analyze a multibody system including a very flexible beam, formulations for the sliding joint between a very deformable beam and a rigid body are derived using a non-generalized coordinate, which has no inertia or forces associated with it. In particular, a very flexible catenary cable on which a multibody system moves along its length is presented as a numerical example.

Nodal Transport Methods Using the Simplified Even-Parity Neutron Transport Equation (단순 우성 중성자 수송방정식을 이용한 노달 수송해법)

  • Noh, Taewan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.211-221
    • /
    • 2018
  • Nodal transport methods are proposed for solving the simplified even-parity neutron transport (SEP) equation. These new methods are attributed to the success of existing nodal diffusion methods such as the Polynomial Expansion Nodal and the Analytic Function Expansion Nodal Methods, which are known to be very effective for solving the neutron diffusion equation. Numerical results show that the simplified even-parity transport equation is a valid approximation to the transport equation and that the two nodal methods developed in this study also work for the SEP transport equation, without conflict. Since accuracy of methods is easily increased by adding node unknowns, the proposed methods will be effective for coarse mesh calculation and this will also lead to computation efficiency.

A Study on the Stifness of Coil Spring in the Three Dimensional Space (3차원 공간에서 코일스프링의 강성에 관한 연구)

  • 이수종
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1130-1139
    • /
    • 2001
  • Springs are widely utilized in machine element. To find out stiffness of coil spring, the space beam theory using the finite element method is adopted in this paper. In three dimensional space, a space frame element is a straight bar of uniform cross section which is capable of resisting axial forces, bending moments about two principal axes in the plane of its cross section and twisting moment about its centroidal axis. The corresponding displacement degrees of freedom are twelve. The displacements of nodal points due to small increment of force are calculated by the finite element method and the calculated nodal displacements are added to coordinates of nodal points. The new stiffness matrix of the system using the new coordinates of nodal points is adopted to calculated the another increments of nodal displacements, that is, the step by step method is used in this paper. The results of the finite element method are fairly well agreed with those of various experiments. Using MATLAB program developed in this paper, spring constants can be predicted by input of few factors.

  • PDF

A Study on the non -linearity of wave washer spring (웨이브 와셔 스프링의 비선형성에 관한 연구)

  • 이수종;왕지석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.246-255
    • /
    • 1997
  • The wave washer springs are expected to behave non-linearly between forces and displace¬ments due to contractions of the height and due to expansions in radial direction. To find out the non -linearity of wave washer springs, the three dimensional plate analysis theory using the finite element method is adopted in this paper. The wave washer springs are considered to be three dimensional plate structures rather than frame structures, because their thickness is normally much smaller than their width. The displacements of nodal points due to small increment of force are calculated by the finite element method and the calculated nodal displacements are added to X - Y Z coordinates of nodal points. The new stiffness matrix of the system using the new coordinates of nodal points is adopted to calculate the another nodal displacements, that is, the step by step method is used in this paper. The relations between the increments of forces and displacements in each step are recorded and plotted in chart. The experimental results are compared with the calculated chart and it is shown that there are good coincidences between measured values and calculated ones.

  • PDF

A Study on the Stiffness of Frustum-shaped Coil Spring (원추형 코일스프링의 강성에 대한 연구)

  • 김진훈;이수종;이경호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.21-27
    • /
    • 2001
  • Springs are widely utilized in machine element. To find out stiffness of frustum-shaped coil spring, the space beam theory using the finite element method is adopted in this paper In three dimensional space, a space frame element is a straight bar of uniform cross section which is capable of resisting axial forces, bending moments about two principal axes in the plane of its cross section and twisting moment about its centroidal axis. The corresponding displacement degrees of freedom are twelve. To find out load vector of coil spring subjected to distributed compression, principle of virtual work is adapted The displacements of nodal points due to small increment of force are calculated by the finite element method and the calculated nodal displacements are added to coordinates of nodal points. The new stiffness matrix of the system using the new coordinates of nodal points is adopted to calculate the another increments of nodal displacements, that is, the step by step method is used in this paper. The results of the finite element method are fairly well agreed with those of various experiments. Using MATLAB program developed in this paper, spring constants and stresses can be predicted by input of few factors.

  • PDF