• Title/Summary/Keyword: Nitrogenase

Search Result 85, Processing Time 0.023 seconds

Interactive Effects of UV-B and Pesticides on Photosynthesis and Nitrogen Fixation of Anabaena doliolum

  • Chandrai, Lar;Vandana, Pandey
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.423-430
    • /
    • 2002
  • The effects of UV-B and commercial grade pesticides (butachlor and carbofuran), individually and in combination, were studied on a variety of physiological processes of rice field cyanobacterium Anabaena doliolum. Butachlor was found to be $2-12\%$ more toxic than carbofuran and $4-24\%$ than UV-B on the growth, photosynthesis, lipid peroxidation, membrane permeability, and nitrogenase activity of the test cyanobacterium. Of the three photosynthesis inhibitors, the butachlor-induced inhibition of whole chain was approximately 3 and $21\%$ higher than carbofuran and UV-B, respectively. Although the interaction of the stress factors caused a significant inhibition (P<0.01), it was still less than the additive effect on the parameters investigated, except for PSI.

Characterization of Azospirillum spp. Isolated from Korean Paddy Roots (우리나라 수도근권에서 분리된 Azospirillum spp.의 특성)

  • 조무제;강규영;강성모;윤한대
    • Korean Journal of Microbiology
    • /
    • v.25 no.2
    • /
    • pp.129-136
    • /
    • 1987
  • Nitrogen fixing activity associated with 40 varieties of rice was assayed at heading stage by an in situ acetylene reduction method. The in situ acetylene reduction activity and population of nitrogen fixing bacteria obtained on nitrogen-free malate medium for Azospirillum spp. enrichment showed positive correlation. Six Azospirillum spp. with high nitrogenase activity were isolated from the rice roots, from which five spp. were identified as A. lipoferum and one was A. brasilense. The physiological characteristics of the six Azospirillum isolates, that is, carbon source utilization, biotin requirement, antibiotic resistance, indole acetic acid excretion, plasmid profile and protein patterns were compared.

  • PDF

Characterization of Plant Growth-Promoting Traits of Free-Living Diazotrophic Bacteria and Their Inoculation Effects on Growth and Nitrogen Uptake of Crop Plants

  • Islam, Md. Rashedu;Madhaiyan, M.;Boruah, Hari P.Deka;Yim, Woo-Jong;Lee, Gill-Seung;Saravanan, V.S.;Fu, Qingling;Hu, Hongqing;Sa, Tongmin
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1213-1222
    • /
    • 2009
  • The search for diverse plant growth-promoting (PGP) diazotrophic bacteria is gaining momentum as efforts are made to exploit them as biofertilizers for various economically important crops. In the present study, 17 diazotrophic strains belonging to eight different genera isolated from rice paddy fields were screened for multiple PGP traits and evaluated for their inoculation effects on canola and rice plants. All of the strains tested positive for 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity and production of indole 3-acetic acid (IAA) and ammonia ($NH_3$). Additionally, four of the strains were able to solubilize phosphorus (P), five tested positive for zinc (Zn) solubilization and sulfur (S) oxidation, and eight strains produced siderophores. Based on the presence of multiple PGP traits, 10 strains were selected for inoculation studies. Treatment with Herbaspirillum sp. RFNB26 resulted in maximum root length (54.3%), seedling vigor, and dry biomass in canola, whereas Paenibacillus sp. RFNB4 exhibited the lowest activity under gnotobiotic conditions. However, under pot culture conditions, Paenibacillus sp. RFNB4 significantly increased plant height and dry biomass production by 42.3% and 29.5%, respectively. Canola plants and rhizosphere soils inoculated with Bacillus sp. RFNB6 exhibited significantly higher nitrogenase activity. In greenhouse experiments, Serratia sp. RFNB18 increased rice plant height by 35.1%, Xanthomonas sp. RFNB24 enhanced biomass production by 84.6%, and rice rhizosphere soils inoculated with Herbaspirillum sp. RFNB26 exhibited the highest nitrogenase activity. Our findings indicate that most of the selected strains possess multiple PGP properties that significantly improve the growth parameters of the two plants when tested under controlled conditions.

Light-dependent Hydrogen Production in Chlorobium limicola f. thiosulfatophilum NCIB 8327: A Possibility of Regulation via Glutamine Synthetase (Chlorobium limicola f. thiosulfatophilum NCIB 8327에서의 광수소발생 조절 기작에 대하여)

  • 나종욱;강사욱
    • Korean Journal of Microbiology
    • /
    • v.30 no.6
    • /
    • pp.558-563
    • /
    • 1992
  • Chlorobium liimicola f. thiosulfatophilum NCIB 8327 was grown on modified Pfennig's medium using ammonium chloride. glutamine. glutamate, or dinitrogen gas as nitrogen sources. Except for the case of dinitrogen gas. the extent of gro\\1h was almost the s~me. The specific activity of glutamine synthetase in crude extracts is the highest in the cells which were grown on the medium containing glutamate. hut that of glutamate synthase is uniform for all four nitrogen sources. When the concentration of ammonium ions increases in the reaction mixture. the specific activity of glutamine synthetase in crude extract from the cells grown on glutamate decreases. hut that of glutamate dehydrogenase increases. whereas that of glutamate synthase remains unchanged. When the concentration of methionine sulfoximine increases, the activity of glutamine synthetases decreases rapidly. On the other hand. when the concentration of ammonium ions increases in the reaction mixture gradually. the activity of glutamine synthetase from the cells grown on higher concentration of ammonium ions less decreases. In the presence of light. the activity of glutamine synthetase increases. hut in the dark it decreases gradually. The production of hydrogen in intact cells depends on light. It is inhihited by adding ammonium ions. hut restores immediately hy adding methionine sulfoximine. The produclion of hydrogen in this strain can he mediated by nitrogenase only. and regulated hy glutamine synthetase.

  • PDF

Hydrogen Production by Purple Sulfur Bacteria, Thiocapsa roseopersicina in Photoheterotrophic Culture Condition (홍색유황세균, Thiocapsa roseopersicina의 photoheterotrophic 조건에서의 수소생산)

  • Kim, Mi-Sun;In, Sun-Kyoung;Baek, Jin-Sook;Lee, Jeong-K.
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.413-417
    • /
    • 2005
  • The purple sulfur phototrophic bacterium, Thiocapsa roseopersicina NCIB 8347 has been studied on hydrogen production and cell growth under different culture conditions, such as light source, light intensity, and growth temperature. T. roseopersicina showed maximum cell growth of 1.38 and 1.42 g-DCW/L under 7.5-10 klux of halogen and fluorescent light, respectively, and produced maximum amount of hydrogen with values of 0.90 and 0.48 $mL-H_2/mg$-DCW under the irradiation of 10 klux of halogen and fluorescent light, respectively. The optimum growth temperature for hydrogen production was $26^{\circ}C$, and hydrogen production rate was lowered over $30^{\circ}C$. When T. roseopersicina was grown photoheterotrophically under irradiation of 8-9 klux of halogen lamp, the generation time was 4.2 hr. The strains started producing hydrgen from the middle of the logarithmic growth phase and continued until succinate concentration leveled out.

Analysis of the orf 282 Gene and Its Function in Rhodobacter sphaeroide 2.4.1 (R. sphaeroides 에서의 orf282 유전자의 분석과 이들의 기능)

  • Son, Myung-Hwa;Lee, Sang-Joon
    • Journal of Life Science
    • /
    • v.22 no.8
    • /
    • pp.1009-1017
    • /
    • 2012
  • The orf282 gene of Rhodobacter sphaeroides is located between the ccoNOQP operon encoding $cbb_3$ terminal oxidase and the fnrL gene encoding an anaerobic activator, FnrL. Its function remains unknown. In an attempt to reveal the function of the orf282 gene, we disrupted the gene by deleting a portion of the orf282 gene and constructed an orf282-knockout mutant. Two FnrL binding sites were found to be located upstream of orf282, and it was demonstrated that orf282 is positively regulated by FnrL. The orf282 gene is not involved in the regulation of spectral complex formation. The $cbb_3$ oxidase activity detected in the orf282 mutant was comparable to that in the wild-type sample, indicating that the orf282 gene is not involved in the regulation of the ccoNOQP operon and the biosynthesis of the cbb3 cytochrome c oxidase. The elevated promoter activity of the nifH and nifA genes, which are the structural genes of nitrogenase and its regulator, respectively, in the orf282 mutant, suggests that the orf282 gene product acts as a negative effector for nifH and nifA expression.

Effect of Phosphorus Stress on Photosynthesis and Nitrogen Fixation of Soybean Plant under $CO_2$ Enrichment (대기 $CO_2$ 상승시 인산공급이 식물체의 광합성 및 질소고정에 미치는 영향)

  • Sa, Tong-Min
    • Applied Biological Chemistry
    • /
    • v.40 no.2
    • /
    • pp.134-138
    • /
    • 1997
  • The objective of this study was to examine the effect of phosphorus deficiency on nitrogen fixation and photosynthesis of nitrogen fixing soybean plant under $CO_2$ enrichment condition. The soybean plants(Glycine max [L.] Merr.) inoculated with Bradyrhizobium japonicum MN 110 were grown with P-stressed(0.05 mM-P) and control(1 mM-P) treatment under control$(400\;{\mu}l/L\;CO_2)$ and enrichment$(800\;{\mu}l/L\;CO_2)$ enviromental condition in the phytotron equipped with high density lamp$(1000\;{\mu}Em^{-2}S^{-1})$ and $28/22^{\circ}C$ temperature cycle for 35 days after transplanting(DAT). At 35 DAT, phosphorus deficiency decreased total dry mass by 64% in $CO_2$ enrichment condition, and 51% in control $CO_2$ condition. Total leaf area was reduced significantly by phosphorus deficiency in control and enriched $CO_2$ condition but specific leaf weight was increased by P deficiency. Phosphorus deficiency significantly reduced photosynthetic rate(carbon exchange rate) and internal $CO_2$ concentration in leaf in both $CO_2$ treatments, but the degree of stress was more severe under $CO_2$ enrichment condition than under control $CO_2$ environmental condition. In phosphorus sufficient plants, $CO_2$ enrichment increased nodule fresh weight and total nitrogenase activity(acetylene reduction) of nodule by 30% and 41% respectively, but specific nitrogenase activity of nodule and nodule fresh weight was not affected by $CO_2$ enrichment in phosphorus deficient plant at 35 DAT. Total nitrogen concentrations in stem, root and nodule tissue were significantly higher in phosphorus sufficient plant grown under $CO_2$ enrichment, but nitrogen concentration in leaf was reduced by 30% under $CO_2$ enrichment. These results indicate that increasing $CO_2$ concentration does not affect plant growth under phosphorus deficient condition and phosphorus stress might inhibit carbohydrate utilization in whole plant and that $CO_2$ enrichment could not increase nodule formation and functioning under phosphorus deficient conditions and phosphorus has more important roles in nodule growth and functioning under $CO_2$ enrichment environments than under ambient condition.

  • PDF

Effects of Co-Cultures, Containing N-Fixer and P-Solubilizer, on the Growth and Yield of Pearl Millet (Pennisetum glaucum (L.) R. Br.) and Blackgram (Vigna mungo L.)

  • POONGUZHALI POONGUZHALI;SELVARAJ SELVARAJ;MADHAIYAN MUNUSAMY;THANGARAJU MUTHU;RYU JEOUNGHYUN;CHUNG KEUNYOOK;SA TONGMIN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.903-908
    • /
    • 2005
  • Inoculation of the carrier-based mixed bioinoculants af N-fixer (Azospirillum lipoferum strain Az204/Rhizobium strain BMBS P47) and phosphate-solubilizing bacterium (Bacillus megaterium var phosphaticum strain Pb 1) promoted growth and yield of pearl millet and blackgram under pot-culture conditions. The mixed inoculant of Az204 and Pb 1 enhanced germination, seedling vigor, plant height, and seed weight, and resulted in $6\%$ increase in grain yield of pearl millet. Likewise, the mixed inoculant of BMBS P47 and Pb1 increased growth, nodulation, and yield in blackgram. The rhizosphere soil enzyme activities, including nitrogenase, urease, and phosphatase, in both pearl millet and blackgram were significantly increased by the inoculation of the mixed inoculant, compared to that of the individual inoculants. The results clearly indicate the beneficial effect of co-culturing the N-fixer and P-solubilizer in inoculants production.

Influence of Arbuscular Mycorrhizal Fungus and Kinetin on the Response of Mungbean Plants to Irrigation by Seawater

  • Rabie, G.H.
    • Mycobiology
    • /
    • v.32 no.2
    • /
    • pp.79-87
    • /
    • 2004
  • An experiment was carried out to investigate the effects of pre-inoculation with the mycorrhizal fungus Glomus clarum and foliar application of kinetin on the growth of mungbean plant irrigated wht different dilution of seawater. Arbuscular-mycorrhizal(AM) infection significantly increased dry weight, height, chlorophyll, sugar and protein content, nitrogen and phosphorus-use efficiencies, leaf conductivity, transpiration rate, nitrogenase, acid and alkaline phosphates activities of all salinized mungbean plants in comparison with control and non-mycorrhizal plants irrespective of the presence or absence of kinetin. Mycorrrhizal plants showed higher concentrations of N, P, K, Ca and Mg and lower Na/N, Na/P, Na/K, Na/Ca and Na/Mg ratios than non-mycorrhizal plants when irrigated with certain dilution of seawater. Mungbean plants showed 597% and 770% dependency on AM fungus G. clarum in absence and presence of kinetin, respectively, for biomass production under a level of 30% of seawater. The average value of tolerance index for mycorrhizal plants accounted 267% and 364% in absence and presence kinetin respectively. This study provides evidence for the benefits of kinetin which are actually known for mycorrhizal than non-mycorrhzal plants. AM fungus and kinetin protected the host plants against the detrimental effects of salt. However, mycorrhizal infection was much more effective than kinetin applications. Thus management applications of this arbuscular mycorrhizal endophyte(G. clarum) with kinetin could be of importance in using seawater in certain dilution for irrigation in agriculture.

Methods for Introduction of the Atmospheric Nitrogen Fixing Ability to Plants

  • PreiningerE;BokaK;ZatykoJ;KoranyiP;GyurjanI
    • Journal of Plant Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.31-38
    • /
    • 1999
  • An artificial symbiosis was established between diazotropic Azomonas insignis and strawberry (Fragaria x ananassa). The partnership was created by in vitro techniques through callus induction and organogenesis. The basis of this partnerships is the bacterial dependence on the plants metabolic activity, using maltose in the medium as a carbon and energy source which can be utilized by the plant cells only. The presence of bacteria in the intercellular spaces of the callus tissues and regenerated plants was proven by microscopic techniques. Nitrogenase activity could also be detected in the plant tissues. For successful and high frequency introduction of bacteria to the plant tissues, biolistic gun method was used. On the basis of the DNA transfer method, Azotobacter vinelandii bacteria were delivered directly into strawberry tissues by the particle bombardment. This was the first use of living bacteria as microprojectils for bombardment of plant tissues. The treatment was successful, the presence of bacteria in the developing callus tissue and regenerated plants were detected by light and electron microscopy.

  • PDF